[神经网络]使用olivettiface数据集进行训练并优化,观察对比loss结果

发布于:2025-05-29 ⋅ 阅读:(23) ⋅ 点赞:(0)

结合归一化和正则化来优化网络模型结构,观察对比loss结果

搭建的神经网络,使用olivettiface数据集进行训练,结合归一化和正则化来优化网络模型结构,观察对比loss结果

from sklearn.datasets import fetch_olivetti_faces #倒入数据集
olivetti_faces = fetch_olivetti_faces(data_home='./face_data', shuffle=True)
print(olivetti_faces.data.shape) #打印数据集的形状
print(olivetti_faces.target.shape) #打印目标的形状
print(olivetti_faces.images.shape) #打印图像的形状
(400, 4096)
(400,)
(400, 64, 64)
import matplotlib.pyplot as plt

face = olivetti_faces.images[1] #选择第二张人脸图像
plt.imshow(face, cmap='gray') #显示图像 cmap='gray'表示灰度图
plt.show()

在这里插入图片描述

olivetti_faces.data[1] #选择第二张人脸图像的扁平化数据
array([0.76859504, 0.75619835, 0.74380165, ..., 0.48347107, 0.6280992 ,
       0.6528926 ], shape=(4096,), dtype=float32)
import torch
import torch.nn as nn
images = torch.tensor(olivetti_faces.data) #将数据转换为tensor
targets = torch.tensor(olivetti_faces.target) #将目标转换为tensor 
images.shape #打印图像的形状
torch.Size([400, 4096])
targets.shape #打印目标的形状
torch.Size([400])
dataset = [(img,lbl) for img,lbl in zip(images, targets)] #将图像和标签组合成一个数据集
dataset[0] #打印数据集的第一个元素
(tensor([0.6694, 0.6364, 0.6488,  ..., 0.0868, 0.0826, 0.0744]), tensor(13))
dataloader = torch.utils.data.DataLoader(dataset, batch_size=10, shuffle=True) #创建数据加载器,批量大小为10,打乱数据
# device = torch.device('mps' if torch.backends.mps.is_available() else 'cpu')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

device
device(type='cpu')

使用Dropout正则化优化

# 多层神经网络模型
model = nn.Sequential(
    nn.Linear(4096, 8192), # 输入层,输入特征数为4096
    nn.ReLU(), # ReLU激活函数
    nn.Dropout(), # Dropout正则化
    nn.Linear(8192, 16384), # 隐藏层,输出特征数为16384
    nn.ReLU(),
    nn.Dropout(),
    nn.Linear(16384, 1024), # 隐藏层,输出特征数为1024
    nn.ReLU(),
    nn.Dropout(),
    nn.Linear(1024, 40) # 输出层,输出特征数为40(对应40个类别)
).to(device)  # 模型结构搬到GPU内存中
print(model) # 打印模型结构
Sequential(
  (0): Linear(in_features=4096, out_features=8192, bias=True)
  (1): ReLU()
  (2): Dropout(p=0.5, inplace=False)
  (3): Linear(in_features=8192, out_features=16384, bias=True)
  (4): ReLU()
  (5): Dropout(p=0.5, inplace=False)
  (6): Linear(in_features=16384, out_features=1024, bias=True)
  (7): ReLU()
  (8): Dropout(p=0.5, inplace=False)
  (9): Linear(in_features=1024, out_features=40, bias=True)
)
criterion = nn.CrossEntropyLoss() # 损失函数为交叉熵损失
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3) # 优化器为Adam,学习率为1e-3
# 训练模型
loss_hist = [] # 用于记录损失值
# 将模型设置为训练模式
model.train()
for i in range(20): # 训练20个epoch
    for img,lbl in dataloader:
        img,lbl = img.to(device), lbl.to(device)  # 数据和模型在同一个设备端
        result = model(img)
        loss = criterion(result, lbl)
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()

        loss_hist.append(loss.item()) # 记录损失值
        print(f'epoch:{i+1} loss:{loss.item():.4f}') # 打印当前epoch和损失值
epoch:1 loss:3.7076
epoch:1 loss:12.3654
epoch:1 loss:13.7588
epoch:1 loss:6.2780
epoch:1 loss:4.3650
epoch:1 loss:3.9659
epoch:1 loss:3.9149
epoch:1 loss:3.8406
epoch:1 loss:3.8485
epoch:1 loss:3.8279
epoch:1 loss:3.8980
epoch:1 loss:3.8377
epoch:1 loss:3.7295
epoch:1 loss:3.7737
epoch:1 loss:3.7615
epoch:1 loss:3.7997
epoch:1 loss:3.7737
epoch:1 loss:3.7385
epoch:1 loss:3.7080
epoch:1 loss:3.6875
epoch:1 loss:3.7611
epoch:1 loss:3.6810
epoch:1 loss:3.5438
epoch:1 loss:3.7640
epoch:1 loss:3.9102
epoch:1 loss:4.2676
epoch:1 loss:3.8784
epoch:1 loss:3.8589
epoch:1 loss:3.6792
。。。。。。
epoch:20 loss:3.6929
epoch:20 loss:3.6839
epoch:20 loss:3.6866
epoch:20 loss:3.6917
epoch:20 loss:3.6881
epoch:20 loss:3.6903
epoch:20 loss:3.6893
epoch:20 loss:3.6838
epoch:20 loss:3.6909
epoch:20 loss:3.6903
epoch:20 loss:3.6869
epoch:20 loss:3.6871
epoch:20 loss:3.6939
epoch:20 loss:3.6909
epoch:20 loss:3.6971
epoch:20 loss:3.6935
epoch:20 loss:3.6875
epoch:20 loss:3.6901
epoch:20 loss:3.6864
epoch:20 loss:3.6891
epoch:20 loss:3.6912
epoch:20 loss:3.6913
epoch:20 loss:3.6845
epoch:20 loss:3.6889
epoch:20 loss:3.6898
epoch:20 loss:3.6811
epoch:20 loss:3.6926
epoch:20 loss:3.6888
epoch:20 loss:3.6993
epoch:20 loss:3.6898
epoch:20 loss:3.6947
epoch:20 loss:3.6931
epoch:20 loss:3.6951
epoch:20 loss:3.6901
epoch:20 loss:3.6877
epoch:20 loss:3.6880
epoch:20 loss:3.6926
epoch:20 loss:3.6864
epoch:20 loss:3.6910
epoch:20 loss:3.6951
plt.plot(range(len(loss_hist)), loss_hist) # 绘制损失值曲线
plt.show()

在这里插入图片描述

使用BatchNorm1d归一化优化

# 多层神经网络模型
model2 = nn.Sequential(
    nn.Linear(4096, 8192),
    nn.BatchNorm1d(8192),
    nn.ReLU(),
    nn.Dropout(),
    nn.Linear(8192, 16384),
    nn.BatchNorm1d(16384), # 批归一化
    nn.ReLU(),
    nn.Dropout(),
    nn.Linear(16384, 1024),
    nn.BatchNorm1d(1024),
    nn.ReLU(),
    nn.Dropout(),
    nn.Linear(1024, 40)
).to(device)  # 模型结构搬到GPU内存中
print(model2)
Sequential(
  (0): Linear(in_features=4096, out_features=8192, bias=True)
  (1): BatchNorm1d(8192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (2): ReLU()
  (3): Dropout(p=0.5, inplace=False)
  (4): Linear(in_features=8192, out_features=16384, bias=True)
  (5): BatchNorm1d(16384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (6): ReLU()
  (7): Dropout(p=0.5, inplace=False)
  (8): Linear(in_features=16384, out_features=1024, bias=True)
  (9): BatchNorm1d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (10): ReLU()
  (11): Dropout(p=0.5, inplace=False)
  (12): Linear(in_features=1024, out_features=40, bias=True)
)
criterion2 = nn.CrossEntropyLoss() # 损失函数为交叉熵损失
optimizer2 = torch.optim.Adam(model2.parameters(), lr=1e-3) # 优化器为Adam,学习率为1e-3
loss_hist2 = []
model2.train()
for i in range(20):
    for img,lbl in dataloader:
        img,lbl = img.to(device), lbl.to(device)  # 数据和模型在同一个设备端
        result = model2(img)
        loss = criterion2(result, lbl)
        loss.backward()
        optimizer2.step()
        optimizer2.zero_grad()

        loss_hist2.append(loss.item())
        print(f'epoch:{i+1} loss:{loss.item():.4f}')
epoch:1 loss:3.5798
epoch:1 loss:3.2452
epoch:1 loss:3.5353
epoch:1 loss:4.1675
epoch:1 loss:4.0728
epoch:1 loss:3.4937
epoch:1 loss:3.9814
epoch:1 loss:3.6151
epoch:1 loss:3.5217
epoch:1 loss:3.1017
epoch:1 loss:3.4522
epoch:1 loss:4.8181
epoch:1 loss:4.0231
epoch:1 loss:4.3008
epoch:1 loss:3.3741
epoch:1 loss:3.9258
epoch:1 loss:3.6895
epoch:1 loss:4.0020
epoch:1 loss:3.1241
epoch:1 loss:2.9453
epoch:1 loss:3.3162
epoch:1 loss:4.3189
epoch:1 loss:3.4162
epoch:1 loss:4.3958
epoch:1 loss:3.1572
epoch:1 loss:3.2535
epoch:1 loss:3.4887
epoch:1 loss:3.4771
epoch:1 loss:3.5689
epoch:1 loss:2.5994
epoch:1 loss:2.7629
epoch:1 loss:2.9798
epoch:1 loss:2.7517
epoch:1 loss:2.7871
epoch:1 loss:2.6800
epoch:1 loss:2.9784
epoch:1 loss:3.4050
epoch:1 loss:2.6510
epoch:1 loss:3.5258
epoch:1 loss:4.0064
epoch:2 loss:2.8011
epoch:2 loss:2.5357
epoch:2 loss:2.6513
epoch:2 loss:2.5815
epoch:2 loss:2.0862
epoch:2 loss:2.9170
epoch:2 loss:2.5202
 。。。。。。
epoch:20 loss:0.0768
epoch:20 loss:0.0592
epoch:20 loss:0.4393
epoch:20 loss:0.2460
epoch:20 loss:0.1196
epoch:20 loss:0.0596
epoch:20 loss:0.0088
epoch:20 loss:0.1478
epoch:20 loss:0.0671
epoch:20 loss:0.1121
epoch:20 loss:0.1161
epoch:20 loss:0.0191
epoch:20 loss:0.1365
epoch:20 loss:0.0635
epoch:20 loss:0.0404
epoch:20 loss:0.0673
epoch:20 loss:0.0122
epoch:20 loss:0.6775
epoch:20 loss:0.0122
epoch:20 loss:0.0137
epoch:20 loss:0.0415
epoch:20 loss:0.1397
epoch:20 loss:0.0244
epoch:20 loss:0.2535
epoch:20 loss:0.3182
epoch:20 loss:0.2677
epoch:20 loss:0.0028
epoch:20 loss:0.0185
epoch:20 loss:0.1291
epoch:20 loss:0.0514
epoch:20 loss:0.0539
epoch:20 loss:0.0254
epoch:20 loss:0.0723
epoch:20 loss:0.4357
epoch:20 loss:0.1185
epoch:20 loss:0.0806
epoch:20 loss:0.7051
epoch:20 loss:0.0060
epoch:20 loss:0.0527
epoch:20 loss:0.0121
plt.plot(range(len(loss_hist2)), loss_hist2)
plt.show()

在这里插入图片描述

本实验主要内容和结论总结如下:

  1. 数据集
    使用了sklearn.datasets中的Olivetti人脸数据集,包含400张人脸图片,每张图片为64x64像素,分为40类。

  2. 数据处理

    • 图像数据被扁平化为4096维向量。
    • 使用PyTorch的DataLoader进行批量加载。
  3. 模型设计与优化

    • 基础模型:多层全连接神经网络,使用ReLU激活和Dropout正则化。
    • 优化模型:在基础模型的每一层后增加了BatchNorm1d批归一化层,进一步提升训练稳定性和收敛速度。
  4. 训练过程

    • 均采用交叉熵损失函数和Adam优化器,训练20个epoch。
    • 记录并可视化loss变化曲线。

结果对比与观察

  • Dropout正则化:有效缓解过拟合,loss曲线整体下降,但可能波动较大。
  • BatchNorm归一化+Dropout:loss下降更快更平滑,模型收敛速度提升,训练更稳定。

结论

  • 结合归一化(BatchNorm)和正则化(Dropout)可以显著提升神经网络的训练效果和泛化能力。
  • 归一化有助于加速收敛,正则化有助于防止过拟合,两者结合效果更佳。

网站公告

今日签到

点亮在社区的每一天
去签到