day40打卡

发布于:2025-05-31 ⋅ 阅读:(21) ⋅ 点赞:(0)

知识点回顾:

彩色和灰度图片测试和训练的规范写法:封装在函数中
展平操作:除第一个维度batchsize外全部展平
dropout操作:训练阶段随机丢弃神经元,测试阶段eval模式关闭dropout
作业:仔细学习下测试和训练代码的逻辑,这是基础,这个代码框架后续会一直沿用,后续的重点慢慢就是转向模型定义阶段了。

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
import numpy as np
 
# 设备配置
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
 
# 数据预处理函数 - 处理灰度图像(MNIST)
def get_mnist_loaders(batch_size=64):
    # 灰度图像归一化
    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.1307,), (0.3081,))  # MNIST数据集的均值和标准差
    ])
    
    train_dataset = datasets.MNIST(
        root='./data', 
        train=True, 
        download=True, 
        transform=transform
    )
    test_dataset = datasets.MNIST(
        root='./data', 
        train=False, 
        download=True, 
        transform=transform
    )
    
    train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
    test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
    
    return train_loader, test_loader
 
# 数据预处理函数 - 处理彩色图像(CIFAR-10)
def get_cifar10_loaders(batch_size=64):
    # 彩色图像归一化
    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))  # CIFAR-10的均值和标准差
    ])
    
    train_dataset = datasets.CIFAR10(
        root='./data', 
        train=True, 
        download=True, 
        transform=transform
    )
    test_dataset = datasets.CIFAR10(
        root='./data', 
        train=False, 
        download=True, 
        transform=transform
    )
    
    train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
    test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
    
    return train_loader, test_loader
 
# 定义包含展平和dropout的CNN模型
class SimpleCNN(nn.Module):
    def __init__(self, in_channels=1, num_classes=10):
        super(SimpleCNN, self).__init__()
        # 卷积层部分
        self.conv_layers = nn.Sequential(
            nn.Conv2d(in_channels, 32, kernel_size=3, stride=1, padding=1),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2),
            nn.Dropout(0.25),  # 第一个dropout层
            
            nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2),
            nn.Dropout(0.25)   # 第二个dropout层
        )
        
        # 展平操作后接全连接层
        self.fc_layers = nn.Sequential(
            nn.Flatten(),  # 展平操作,保持batch维度不变
            nn.Linear(64 * 7 * 7, 128),  # 假设输入尺寸为32x32,经过两次池化后为8x8,64通道
            nn.ReLU(),
            nn.Dropout(0.5),  # 全连接层后的dropout
            nn.Linear(128, num_classes)
        )
    
    def forward(self, x):
        x = self.conv_layers(x)
        x = self.fc_layers(x)
        return x
 
# 训练函数 - 规范的训练流程
def train(model, train_loader, criterion, optimizer, epoch, device):
    model.train()  # 切换到训练模式,启用dropout
    running_loss = 0.0
    correct = 0
    total = 0
    
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        
        # 梯度清零
        optimizer.zero_grad()
        
        # 前向传播
        output = model(data)
        loss = criterion(output, target)
        
        # 反向传播和优化
        loss.backward()
        optimizer.step()
        
        # 统计训练信息
        running_loss += loss.item()
        _, predicted = output.max(1)
        total += target.size(0)
        correct += predicted.eq(target).sum().item()
        
        if batch_idx % 100 == 0:
            print(f'Epoch: {epoch} | Batch: {batch_idx} | Loss: {loss.item():.4f} | Acc: {100.*correct/total:.2f}%')
    
    epoch_loss = running_loss / len(train_loader)
    epoch_acc = 100. * correct / total
    return epoch_loss, epoch_acc
 
# 测试函数 - 规范的测试流程
def test(model, test_loader, criterion, device):
    model.eval()  # 切换到测试模式,关闭dropout
    test_loss = 0
    correct = 0
    total = 0
    
    with torch.no_grad():  # 不计算梯度,节省内存和计算资源
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            
            # 累加损失
            test_loss += criterion(output, target).item()
            
            # 计算准确率
            _, predicted = output.max(1)
            total += target.size(0)
            correct += predicted.eq(target).sum().item()
    
    test_loss /= len(test_loader)
    test_acc = 100. * correct / total
    print(f'Test Loss: {test_loss:.4f} | Test Accuracy: {test_acc:.2f}%')
    return test_loss, test_acc
 
# 主函数 - 整合整个流程
def main(use_color=False):
    # 选择数据集
    if use_color:
        print("Using CIFAR-10 (color images) dataset...")
        train_loader, test_loader = get_cifar10_loaders(batch_size=128)
        in_channels = 3  # 彩色图像3通道
    else:
        print("Using MNIST (grayscale images) dataset...")
        train_loader, test_loader = get_mnist_loaders(batch_size=128)
        in_channels = 1  # 灰度图像1通道
    
    # 初始化模型
    model = SimpleCNN(in_channels=in_channels, num_classes=10).to(device)
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=0.001)
    
    # 训练和测试循环
    num_epochs = 5
    train_losses, train_accs, test_losses, test_accs = [], [], [], []
    
    for epoch in range(1, num_epochs + 1):
        print(f"\nEpoch {epoch}/{num_epochs}")
        train_loss, train_acc = train(model, train_loader, criterion, optimizer, epoch, device)
        test_loss, test_acc = test(model, test_loader, criterion, device)
        
        train_losses.append(train_loss)
        train_accs.append(train_acc)
        test_losses.append(test_loss)
        test_accs.append(test_acc)
    
    # 绘制训练过程
    plt.figure(figsize=(12, 4))
    
    plt.subplot(1, 2, 1)
    plt.plot(train_losses, label='Train Loss')
    plt.plot(test_losses, label='Test Loss')
    plt.title('Loss Curve')
    plt.xlabel('Epoch')
    plt.ylabel('Loss')
    plt.legend()
    
    plt.subplot(1, 2, 2)
    plt.plot(train_accs, label='Train Accuracy')
    plt.plot(test_accs, label='Test Accuracy')
    plt.title('Accuracy Curve')
    plt.xlabel('Epoch')
    plt.ylabel('Accuracy (%)')
    plt.legend()
    
    plt.tight_layout()
    plt.show()
 
if __name__ == "__main__":
    # 运行灰度图像版本(MNIST)
    main(use_color=False)
    
    # 取消注释以下行运行彩色图像版本(CIFAR-10)
    # main(use_color=True)