Elasticsearch

发布于:2025-06-01 ⋅ 阅读:(22) ⋅ 点赞:(0)

Elasticsearch

上篇

1.初识elasticsearch

商城作为一个电商项目,商品的搜索肯定是访问频率最高的页面之一。目前搜索功能是基于数据库的模糊搜索来实现的,存在很多问题。

首先,查询效率较低。

由于数据库模糊查询不走索引,在数据量较大的时候,查询性能很差。商城的商品表中仅仅有不到9万条数据,基于数据库查询时,搜索接口的表现如图:

在这里插入图片描述

改为基于搜索引擎后,查询表现如下:

在这里插入图片描述

需要注意的是,数据库模糊查询随着表数据量的增多,查询性能的下降会非常明显,而搜索引擎的性能则不会随着数据增多而下降太多。目前仅10万不到的数据量差距就如此明显,如果数据量达到百万、千万、甚至上亿级别,这个性能差距会非常夸张。

其次,功能单一

数据库的模糊搜索功能单一,匹配条件非常苛刻,必须恰好包含用户搜索的关键字。而在搜索引擎中,用户输入出现个别错字,或者用拼音搜索、同义词搜索都能正确匹配到数据。

综上,在面临海量数据的搜索,或者有一些复杂搜索需求的时候,推荐使用专门的搜索引擎来实现搜索功能。

目前全球的搜索引擎技术排名如下:

在这里插入图片描述

排名第一的就是我们今天要学习的elasticsearch.

elasticsearch是一款非常强大的开源搜索引擎,支持的功能非常多,例如:

在这里插入图片描述

代码搜索

在这里插入图片描述

商品搜索

在这里插入图片描述

解决方案搜索

在这里插入图片描述

地图搜索

Elasticsearch是由elastic公司开发的一套搜索引擎技术,它是elastic技术栈中的一部分。完整的技术栈包括:

  • Elasticsearch:用于数据存储、计算和搜索
  • Logstash/Beats:用于数据收集
  • Kibana:用于数据可视化

整套技术栈被称为ELK,经常用来做日志收集、系统监控和状态分析等等:

在这里插入图片描述

整套技术栈的核心就是用来存储搜索计算的Elasticsearch,因此我们接下来学习的核心也是Elasticsearch。

1.1.1.安装elasticsearch

通过下面的Docker命令即可安装单机版本的elasticsearch:

docker run -d \
  --name es \
  -e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \
  -e "discovery.type=single-node" \
  -v es-data:/usr/share/elasticsearch/data \
  -v es-plugins:/usr/share/elasticsearch/plugins \
  --privileged \
  --network heima \
  -p 9200:9200 \
  -p 9300:9300 \
  elasticsearch:7.12.1

通过下面的Docker命令,即可部署Kibana:

docker run -d \
--name kibana \
-e ELASTICSEARCH_HOSTS=http://es:9200 \
--network=heima \
-p 5601:5601  \
kibana:7.12.1

在这里插入图片描述

访问如图,因为已经告诉了容器名字与端口,所以可以不加路径。

1.2.倒排索引

elasticsearch之所以有如此高性能的搜索表现,正是得益于底层的倒排索引技术。那么什么是倒排索引呢?

倒排索引的概念是基于MySQL这样的正向索引而言的。

1.2.1.正向索引

我们先来回顾一下正向索引。

例如有一张名为tb_goods的表:

id title price
1 小米手机 3499
2 华为手机 4999
3 华为小米充电器 49
4 小米手环 49

其中的id字段已经创建了索引,由于索引底层采用了B+树结构,因此我们根据id搜索的速度会非常快。但是其他字段例如title,只在叶子节点上存在。

因此要根据title搜索的时候只能遍历树中的每一个叶子节点,判断title数据是否符合要求。

比如用户的SQL语句为:

select * from tb_goods where title like '%手机%';

那搜索的大概流程如图:

在这里插入图片描述

说明:

  • 1)检查到搜索条件为like '%手机%',需要找到title中包含手机的数据
  • 2)逐条遍历每行数据(每个叶子节点),比如第1次拿到id为1的数据
  • 3)判断数据中的title字段值是否符合条件
  • 4)如果符合则放入结果集,不符合则丢弃
  • 5)回到步骤1

综上,根据id精确匹配时,可以走索引,查询效率较高。而当搜索条件为模糊匹配时,由于索引无法生效,导致从索引查询退化为全表扫描,效率很差。

因此,正向索引适合于根据索引字段的精确搜索,不适合基于部分词条的模糊匹配。

而倒排索引恰好解决的就是根据部分词条模糊匹配的问题。

1.2.2.倒排索引

倒排索引中有两个非常重要的概念:

  • 文档(Document):用来搜索的数据,其中的每一条数据就是一个文档。例如一个网页、一个商品信息
  • 词条(Term):对文档数据或用户搜索数据,利用某种算法分词,得到的具备含义的词语就是词条。例如:我是中国人,就可以分为:我、是、中国人、中国、国人这样的几个词条

原本数据库中的一行数据就是ES中的一个JSON文档;而数据库中每行数据都包含很多列,这些列就转换为JSON文档中的字段(Field)

创建倒排索引是对正向索引的一种特殊处理和应用,流程如下:

  • 将每一个文档的数据利用分词算法根据语义拆分,得到一个个词条
  • 创建表,每行数据包括词条、词条所在文档id、位置等信息
  • 因为词条唯一性,可以给词条创建正向索引

此时形成的这张以词条为索引的表,就是倒排索引表,两者对比如下:

正向索引

id(索引) title price
1 小米手机 3499
2 华为手机 4999
3 华为小米充电器 49
4 小米手环 49

倒排索引

词条(索引) 文档id
小米 1,3,4
手机 1,2
华为 2,3
充电器 3
手环 4

倒排索引的搜索流程如下(以搜索"华为手机"为例),如图:

在这里插入图片描述

流程描述:

1)用户输入条件"华为手机"进行搜索。

2)对用户输入条件分词,得到词条:华为手机

3)拿着词条在倒排索引中查找(由于词条有索引,查询效率很高),即可得到包含词条的文档id:1、2、3

4)拿着文档id到正向索引中查找具体文档即可(由于id也有索引,查询效率也很高)。

虽然要先查询倒排索引,再查询倒排索引,但是无论是词条、还是文档id都建立了索引,查询速度非常快!无需全表扫描。

随着业务发展,需要在es中存储的文档也会越来越多,比如有商品的文档、用户的文档、订单文档等等:

在这里插入图片描述

所有文档都散乱存放显然非常混乱,也不方便管理。

因此,我们要将类型相同的文档集中在一起管理,称为索引(Index)。例如:

商品索引

{
    "id": 1,
    "title": "小米手机",
    "price": 3499
}

{
    "id": 2,
    "title": "华为手机",
    "price": 4999
}

{
    "id": 3,
    "title": "三星手机",
    "price": 3999
}

用户索引

{
    "id": 101,
    "name": "张三",
    "age": 21
}

{
    "id": 102,
    "name": "李四",
    "age": 24
}

{
    "id": 103,
    "name": "麻子",
    "age": 18
}

订单索引

{
    "id": 10,
    "userId": 101,
    "goodsId": 1,
    "totalFee": 294
}

{
    "id": 11,
    "userId": 102,
    "goodsId": 2,
    "totalFee": 328
}
  • 所有用户文档,就可以组织在一起,称为用户的索引;
  • 所有商品的文档,可以组织在一起,称为商品的索引;
  • 所有订单的文档,可以组织在一起,称为订单的索引;

因此,我们可以把索引当做是数据库中的表。

数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有映射(mapping),是索引中文档的字段约束信息,类似表的结构约束。

在这里插入图片描述

1.3.IK分词器

Elasticsearch的关键就是倒排索引,而倒排索引依赖于对文档内容的分词,而分词则需要高效、精准的分词算法,IK分词器就是这样一个中文分词算法。

IK分词器包含两种模式:

  • ik_smart:智能语义切分
  • ik_max_word:最细粒度切分
1.3.1.安装IK分词器
运行一个命令即可:
docker exec -it es ./bin/elasticsearch-plugin  install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.12.1/elasticsearch-analysis-ik-7.12.1.zip
最后,重启es容器:
docker restart es

测试:

在这里插入图片描述

可以看到默认的分法:
{
  "tokens" : [
    {
      "token" : "黑",
      "start_offset" : 0,
      "end_offset" : 1,
      "type" : "<IDEOGRAPHIC>",
      "position" : 0
    },
    {
      "token" : "马",
      "start_offset" : 1,
      "end_offset" : 2,
      "type" : "<IDEOGRAPHIC>",
      "position" : 1
    },
    {
      "token" : "程",
      "start_offset" : 2,
      "end_offset" : 3,
      "type" : "<IDEOGRAPHIC>",
      "position" : 2
    },
    {
      "token" : "序",
      "start_offset" : 3,
      "end_offset" : 4,
      "type" : "<IDEOGRAPHIC>",
      "position" : 3
    },
    {
      "token" : "员",
      "start_offset" : 4,
      "end_offset" : 5,
      "type" : "<IDEOGRAPHIC>",
      "position" : 4
    },
    {
      "token" : "学",
      "start_offset" : 5,
      "end_offset" : 6,
      "type" : "<IDEOGRAPHIC>",
      "position" : 5
    },
    {
      "token" : "习",
      "start_offset" : 6,
      "end_offset" : 7,
      "type" : "<IDEOGRAPHIC>",
      "position" : 6
    },
    {
      "token" : "java",
      "start_offset" : 7,
      "end_offset" : 11,
      "type" : "<ALPHANUM>",
      "position" : 7
    },
    {
      "token" : "太",
      "start_offset" : 11,
      "end_offset" : 12,
      "type" : "<IDEOGRAPHIC>",
      "position" : 8
    },
    {
      "token" : "棒",
      "start_offset" : 12,
      "end_offset" : 13,
      "type" : "<IDEOGRAPHIC>",
      "position" : 9
    },
    {
      "token" : "了",
      "start_offset" : 13,
      "end_offset" : 14,
      "type" : "<IDEOGRAPHIC>",
      "position" : 10
    }
  ]
}
这肯定不满足需求,所以我们用:
POST /_analyze
{
  "analyzer": "ik_smart",
  "text": "黑马程序员学习java太棒了"
}
结果如下:
{
  "tokens" : [
    {
      "token" : "黑马",
      "start_offset" : 0,
      "end_offset" : 2,
      "type" : "CN_WORD",
      "position" : 0
    },
    {
      "token" : "程序员",
      "start_offset" : 2,
      "end_offset" : 5,
      "type" : "CN_WORD",
      "position" : 1
    },
    {
      "token" : "学习",
      "start_offset" : 5,
      "end_offset" : 7,
      "type" : "CN_WORD",
      "position" : 2
    },
    {
      "token" : "java",
      "start_offset" : 7,
      "end_offset" : 11,
      "type" : "ENGLISH",
      "position" : 3
    },
    {
      "token" : "太棒了",
      "start_offset" : 11,
      "end_offset" : 14,
      "type" : "CN_WORD",
      "position" : 4
    }
  ]
}
但是泰裤辣这种词语却没有收录。

所以要想正确分词,IK分词器的词库也需要不断的更新,IK分词器提供了扩展词汇的功能。

1)打开IK分词器config目录:

在这里插入图片描述

注意,如果采用在线安装的通过,默认是没有config目录的,需要把课前资料提供的ik下的config上传至对应目录。

2)在IKAnalyzer.cfg.xml配置文件内容添加:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
        <comment>IK Analyzer扩展配置</comment>
        <!--用户可以在这里配置自己的扩展字典 *** 添加扩展词典-->
        <entry key="ext_dict">ext.dic</entry>
</properties>

3)在IK分词器的config目录新建一个 ext.dic,可以参考config目录下复制一个配置文件进行修改

泰裤辣

4)重启elasticsearch

docker restart es

# 查看 日志
docker logs -f elasticsearch

2.索引库操作

Index就类似数据库表,Mapping映射就类似表的结构。我们要向es中存储数据,必须先创建Index和Mapping

2.1.Mapping映射属性

Mapping是对索引库中文档的约束,常见的Mapping属性包括:

  • type:字段数据类型,常见的简单类型有:
    • 字符串:text(可分词的文本)、keyword(精确值,例如:品牌、国家、ip地址)
    • 数值:longintegershortbytedoublefloat
    • 布尔:boolean
    • 日期:date
    • 对象:object
  • index:是否创建索引,默认为true
  • analyzer:使用哪种分词器
  • properties:该字段的子字段

例如下面的json文档:

{
    "age": 21,
    "weight": 52.1,
    "isMarried": false,
    "info": "黑马程序员Java讲师",
    "email": "zy@itcast.cn",
    "score": [99.1, 99.5, 98.9],
    "name": {
        "firstName": "云",
        "lastName": "赵"
    }
}

在这里插入图片描述

2.2.索引库的CRUD

由于Elasticsearch采用的是Restful风格的API,因此其请求方式和路径相对都比较规范,而且请求参数也都采用JSON风格。

我们直接基于Kibana的DevTools来编写请求做测试,由于有语法提示,会非常方便。

2.2.1.创建索引库和映射

基本语法

  • 请求方式:PUT
  • 请求路径:/索引库名,可以自定义
  • 请求参数:mapping映射

格式

PUT /索引库名称
{
  "mappings": {
    "properties": {
      "字段名":{
        "type": "text",
        "analyzer": "ik_smart"
      },
      "字段名2":{
        "type": "keyword",
        "index": "false"
      },
      "字段名3":{
        "properties": {
          "子字段": {
            "type": "keyword"
          }
        }
      },
      // ...略
    }
  }
}

示例

# PUT /heima
{
  "mappings": {
    "properties": {
      "info":{
        "type": "text",
        "analyzer": "ik_smart"
      },
      "email":{
        "type": "keyword",
        "index": "false"
      },
      "name":{
        "properties": {
          "firstName": {
            "type": "keyword"
          }
        }
      }
    }
  }
}
2.2.2.查询索引库

基本语法

  • 请求方式:GET
  • 请求路径:/索引库名
  • 请求参数:无

格式

GET /索引库名

示例

GET /heima
2.2.3.修改索引库

倒排索引结构虽然不复杂,但是一旦数据结构改变(比如改变了分词器),就需要重新创建倒排索引,这简直是灾难。因此索引库一旦创建,无法修改mapping

虽然无法修改mapping中已有的字段,但是却允许添加新的字段到mapping中,因为不会对倒排索引产生影响。因此修改索引库能做的就是向索引库中添加新字段,或者更新索引库的基础属性。

语法说明

PUT /索引库名/_mapping
{
  "properties": {
    "新字段名":{
      "type": "integer"
    }
  }
}

示例

PUT /heima/_mapping
{
  "properties": {
    "age":{
      "type": "integer"
    }
  }
}
2.2.4.删除索引库

语法:

  • 请求方式:DELETE
  • 请求路径:/索引库名
  • 请求参数:无

格式:

DELETE /索引库名

示例:

DELETE /heima

3.文档操作

有了索引库,接下来就可以向索引库中添加数据了。

Elasticsearch中的数据其实就是JSON风格的文档。操作文档自然保护等几种常见操作,我们分别来学习。

3.1.新增文档

语法:

POST /索引库名/_doc/文档id
{
    "字段1": "值1",
    "字段2": "值2",
    "字段3": {
        "子属性1": "值3",
        "子属性2": "值4"
    },
}

示例:

POST /heima/_doc/1
{
    "info": "黑马程序员Java讲师",
    "email": "zy@itcast.cn",
    "name": {
        "firstName": "云",
        "lastName": "赵"
    }
}

响应:

在这里插入图片描述

3.2.查询文档

根据rest风格,新增是post,查询应该是get,不过查询一般都需要条件,这里我们把文档id带上。

语法:

GET /{索引库名称}/_doc/{id}

示例:

GET /heima/_doc/1

查看结果:

在这里插入图片描述

如果把路径换成/{索引库}/_search,就是查询所有文档了。

3.3.删除文档

删除使用DELETE请求,同样,需要根据id进行删除:

语法:

DELETE /{索引库名}/_doc/id值

示例:

DELETE /heima/_doc/1

结果:

在这里插入图片描述

3.4.修改文档

修改有两种方式:

  • 全量修改:直接覆盖原来的文档
  • 局部修改:修改文档中的部分字段
3.4.1.全量修改

全量修改是覆盖原来的文档,其本质是两步操作:

  • 根据指定的id删除文档
  • 新增一个相同id的文档

注意:如果根据id删除时,id不存在,第二步的新增也会执行,也就从修改变成了新增操作了。

语法:

PUT /{索引库名}/_doc/文档id
{
    "字段1": "值1",
    "字段2": "值2",
    // ... 略
}

示例:

PUT /heima/_doc/1
{
    "info": "黑马程序员高级Java讲师",
    "email": "zy@itcast.cn",
    "name": {
        "firstName": "云",
        "lastName": "赵"
    }
}

由于id1的文档已经被删除,所以第一次执行时,得到的反馈是created

在这里插入图片描述

所以如果执行第2次时,得到的反馈则是updated

在这里插入图片描述

3.4.2.局部修改

局部修改是只修改指定id匹配的文档中的部分字段。

语法:

POST /{索引库名}/_update/文档id
{
    "doc": {
         "字段名": "新的值",
    }
}

示例:

POST /heima/_update/1
{
  "doc": {
    "email": "ZhaoYun@itcast.cn"
  }
}

执行结果

在这里插入图片描述

3.5.批处理

批处理采用POST请求,基本语法如下:

POST _bulk
{ "index" : { "_index" : "test", "_id" : "1" } }
{ "field1" : "value1" }
{ "delete" : { "_index" : "test", "_id" : "2" } }
{ "create" : { "_index" : "test", "_id" : "3" } }
{ "field1" : "value3" }
{ "update" : {"_id" : "1", "_index" : "test"} }
{ "doc" : {"field2" : "value2"} }

其中:

  • index代表新增操作
    • _index:指定索引库名
    • _id指定要操作的文档id
    • { "field1" : "value1" }:则是要新增的文档内容
  • delete代表删除操作
    • _index:指定索引库名
    • _id指定要操作的文档id
  • update代表更新操作
    • _index:指定索引库名
    • _id指定要操作的文档id
    • { "doc" : {"field2" : "value2"} }:要更新的文档字段

示例,批量新增:

POST /_bulk
{"index": {"_index":"heima", "_id": "3"}}
{"info": "黑马程序员C++讲师", "email": "ww@itcast.cn", "name":{"firstName": "五", "lastName":"王"}}
{"index": {"_index":"heima", "_id": "4"}}
{"info": "黑马程序员前端讲师", "email": "zhangsan@itcast.cn", "name":{"firstName": "三", "lastName":"张"}}

批量删除:

POST /_bulk
{"delete":{"_index":"heima", "_id": "3"}}
{"delete":{"_index":"heima", "_id": "4"}}

4.RestAPI

ES官方提供了各种不同语言的客户端,用来操作ES。这些客户端的本质就是组装DSL语句,通过http请求发送给ES。

4.1.初始化RestClient

在elasticsearch提供的API中,与elasticsearch一切交互都封装在一个名为RestHighLevelClient的类中,必须先完成这个对象的初始化,建立与elasticsearch的连接。

分为三步:

1)在item-service模块中引入esRestHighLevelClient依赖:

<dependency>
    <groupId>org.elasticsearch.client</groupId>
    <artifactId>elasticsearch-rest-high-level-client</artifactId>
</dependency>

2)因为SpringBoot默认的ES版本是7.17.10,所以我们需要覆盖默认的ES版本:

  <properties>
      <maven.compiler.source>11</maven.compiler.source>
      <maven.compiler.target>11</maven.compiler.target>
      <elasticsearch.version>7.12.1</elasticsearch.version>
  </properties>

3)初始化RestHighLevelClient:

初始化的代码如下:

RestHighLevelClient client = new RestHighLevelClient(RestClient.builder(
        HttpHost.create("http://192.168.6.128:9200")
));

这里为了单元测试方便,我们创建一个测试类IndexTest,然后将初始化的代码编写在@BeforeEach方法中:

package com.hmall.item.es;

import org.apache.http.HttpHost;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestHighLevelClient;
import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;

import java.io.IOException;

public class IndexTest {

    private RestHighLevelClient client;

    @BeforeEach
    void setUp() {
        this.client = new RestHighLevelClient(RestClient.builder(
                HttpHost.create("http://192.168.6.128:9200")
        ));
    }

    @Test
    void testConnect() {
        System.out.println(client);
    }

    @AfterEach
    void tearDown() throws IOException {
        this.client.close();
    }
}

4.1.创建索引库

由于要实现对商品搜索,所以我们需要将商品添加到Elasticsearch中,不过需要根据搜索业务的需求来设定索引库结构,而不是一股脑的把MySQL数据写入Elasticsearch.

4.1.1.Mapping映射

搜索页面的效果如图所示:

在这里插入图片描述

实现搜索功能需要的字段包括三大部分:

  • 搜索过滤字段

    • 分类
    • 品牌
    • 价格
  • 排序字段

    • 默认:按照更新时间降序排序
    • 销量
    • 价格
  • 展示字段

    • 商品id:用于点击后跳转
    • 图片地址
    • 是否是广告推广商品
    • 名称
    • 价格
    • 评价数量
    • 销量
对应的商品表结构如下:

在这里插入图片描述

因此,最终我们的索引库文档结构应该是这样:

PUT /items
{
  "mappings": {
    "properties": {
      "id": {
        "type": "keyword"
      },
      "name":{
        "type": "text",
        "analyzer": "ik_max_word"
      },
      "price":{
        "type": "integer"
      },
      "stock":{
        "type": "integer"
      },
      "image":{
        "type": "keyword",
        "index": false
      },
      "category":{
        "type": "keyword"
      },
      "brand":{
        "type": "keyword"
      },
      "sold":{
        "type": "integer"
      },
      "commentCount":{
        "type": "integer",
        "index": false
      },
      "isAD":{
        "type": "boolean"
      },
      "updateTime":{
        "type": "date"
      }
    }
  }
}
index默认为true,即默认搜索。
4.1.2.创建索引

创建索引库的API如下:

在这里插入图片描述

代码分为三步:

  • 1)创建Request对象。
    • 因为是创建索引库的操作,因此Request是CreateIndexRequest
  • 2)添加请求参数
    • 其实就是Json格式的Mapping映射参数。因为json字符串很长,这里是定义了静态字符串常量MAPPING_TEMPLATE,让代码看起来更加优雅。
  • 3)发送请求
    • client.``indices``()方法的返回值是IndicesClient类型,封装了所有与索引库操作有关的方法。例如创建索引、删除索引、判断索引是否存在等

item-service中的IndexTest测试类中,具体代码如下:

@Test
void testCreateIndex() throws IOException {
    // 1.创建Request对象
    CreateIndexRequest request = new CreateIndexRequest("items");
    // 2.准备请求参数
    request.source(MAPPING_TEMPLATE, XContentType.JSON);
    // 3.发送请求
    client.indices().create(request, RequestOptions.DEFAULT);
}

static final String MAPPING_TEMPLATE = "{\n" +
            "  \"mappings\": {\n" +
            "    \"properties\": {\n" +
            "      \"id\": {\n" +
            "        \"type\": \"keyword\"\n" +
            "      },\n" +
            "      \"name\":{\n" +
            "        \"type\": \"text\",\n" +
            "        \"analyzer\": \"ik_max_word\"\n" +
            "      },\n" +
            "      \"price\":{\n" +
            "        \"type\": \"integer\"\n" +
            "      },\n" +
            "      \"stock\":{\n" +
            "        \"type\": \"integer\"\n" +
            "      },\n" +
            "      \"image\":{\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"index\": false\n" +
            "      },\n" +
            "      \"category\":{\n" +
            "        \"type\": \"keyword\"\n" +
            "      },\n" +
            "      \"brand\":{\n" +
            "        \"type\": \"keyword\"\n" +
            "      },\n" +
            "      \"sold\":{\n" +
            "        \"type\": \"integer\"\n" +
            "      },\n" +
            "      \"commentCount\":{\n" +
            "        \"type\": \"integer\"\n" +
            "      },\n" +
            "      \"isAD\":{\n" +
            "        \"type\": \"boolean\"\n" +
            "      },\n" +
            "      \"updateTime\":{\n" +
            "        \"type\": \"date\"\n" +
            "      }\n" +
            "    }\n" +
            "  }\n" +
            "}";

4.2.删除索引库

删除索引库的请求非常简单:

DELETE /hotel

与创建索引库相比:

  • 请求方式从PUT变为DELTE
  • 请求路径不变
  • 无请求参数

所以代码的差异,注意体现在Request对象上。流程如下:

  • 1)创建Request对象。这次是DeleteIndexRequest对象
  • 2)准备参数。这里是无参,因此省略
  • 3)发送请求。改用delete方法

item-service中的IndexTest测试类中,编写单元测试,实现删除索引:

@Test
void testDeleteIndex() throws IOException {
    // 1.创建Request对象
    DeleteIndexRequest request = new DeleteIndexRequest("items");
    // 2.发送请求
    client.indices().delete(request, RequestOptions.DEFAULT);
}

4.3.判断索引库是否存在

判断索引库是否存在,本质就是查询,对应的请求语句是:

GET /hotel

因此与删除的Java代码流程是类似的,流程如下:

  • 1)创建Request对象。这次是GetIndexRequest对象
  • 2)准备参数。这里是无参,直接省略
  • 3)发送请求。改用exists方法
@Test
void testExistsIndex() throws IOException {
    // 1.创建Request对象
    GetIndexRequest request = new GetIndexRequest("items");
    // 2.发送请求
    boolean exists = client.indices().exists(request, RequestOptions.DEFAULT);
    // 3.输出
    System.err.println(exists ? "索引库已经存在!" : "索引库不存在!");
}

4.4.总结

JavaRestClient操作elasticsearch的流程基本类似。核心是client.indices()方法来获取索引库的操作对象。

索引库操作的基本步骤:

  • 初始化RestHighLevelClient
  • 创建XxxIndexRequest。XXX是CreateGetDelete
  • 准备请求参数( Create时需要,其它是无参,可以省略)
  • 发送请求。调用RestHighLevelClient#indices().xxx()方法,xxx是createexistsdelete

5.RestClient操作文档

索引库准备好以后,就可以操作文档了。为了与索引库操作分离,我们再次创建一个测试类,做两件事情:

  • 初始化RestHighLevelClient
  • 我们的商品数据在数据库,需要利用IItemService去查询,所以注入这个接口
package com.hmall.item.es;

import com.hmall.item.service.IItemService;
import org.apache.http.HttpHost;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestHighLevelClient;
import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeEach;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;

import java.io.IOException;

@SpringBootTest(properties = "spring.profiles.active=local")
public class DocumentTest {

    private RestHighLevelClient client;
    @Autowired
    private IItemService itemService;

    @BeforeEach
    void setUp() {
        this.client = new RestHighLevelClient(RestClient.builder(
                HttpHost.create("http://192.168.6.128:9200")
        ));
    }
    
    @AfterEach
    void tearDown() throws IOException {
        this.client.close();
    }
}
注意,@SpringBootTest(properties = "spring.profiles.active=local")启用local配置。

5.1.新增文档

我们需要将数据库中的商品信息导入elasticsearch中,而不是造假数据了。

5.1.1.实体类

索引库结构与数据库结构还存在一些差异,因此我们要定义一个索引库结构对应的实体。

hm-service模块的com.hmall.item.domain.dto包中定义一个新的DTO:

package com.hmall.item.domain.po;

import io.swagger.annotations.ApiModel;
import io.swagger.annotations.ApiModelProperty;
import lombok.Data;

import java.time.LocalDateTime;

@Data
@ApiModel(description = "索引库实体")
public class ItemDoc{

    @ApiModelProperty("商品id")
    private String id;

    @ApiModelProperty("商品名称")
    private String name;

    @ApiModelProperty("价格(分)")
    private Integer price;

    @ApiModelProperty("商品图片")
    private String image;

    @ApiModelProperty("类目名称")
    private String category;

    @ApiModelProperty("品牌名称")
    private String brand;

    @ApiModelProperty("销量")
    private Integer sold;

    @ApiModelProperty("评论数")
    private Integer commentCount;

    @ApiModelProperty("是否是推广广告,true/false")
    private Boolean isAD;

    @ApiModelProperty("更新时间")
    private LocalDateTime updateTime;
}
5.1.2.API语法

新增文档的请求语法如下:

POST /{索引库名}/_doc/1
{
    "name": "Jack",
    "age": 21
}

对应的JavaAPI如下:

在这里插入图片描述

可以看到与索引库操作的API非常类似,同样是三步走:

  • 1)创建Request对象,这里是IndexRequest,因为添加文档就是创建倒排索引的过程
  • 2)准备请求参数,本例中就是Json文档
  • 3)发送请求

变化的地方在于,这里直接使用client.xxx()的API,不再需要client.indices()了。

5.1.3.完整代码

我们导入商品数据,除了参考API模板“三步走”以外,还需要做几点准备工作:

  • 商品数据来自于数据库,我们需要先查询出来,得到Item对象
  • Item对象需要转为ItemDoc对象
  • ItemDTO需要序列化为json格式

因此,代码整体步骤如下:

  • 1)根据id查询商品数据Item
  • 2)将Item封装为ItemDoc
  • 3)将ItemDoc序列化为JSON
  • 4)创建IndexRequest,指定索引库名和id
  • 5)准备请求参数,也就是JSON文档
  • 6)发送请求

item-serviceDocumentTest测试类中,编写单元测试:

@Test
void testAddDocument() throws IOException {
    // 1.根据id查询商品数据
    Item item = itemService.getById(100002644680L);
    // 2.转换为文档类型
    ItemDoc itemDoc = BeanUtil.copyProperties(item, ItemDoc.class);
    // 3.将ItemDTO转json
    String doc = JSONUtil.toJsonStr(itemDoc);

    // 1.准备Request对象
    IndexRequest request = new IndexRequest("items").id(itemDoc.getId());
    // 2.准备Json文档
    request.source(doc, XContentType.JSON);
    // 3.发送请求
    client.index(request, RequestOptions.DEFAULT);
}

5.2.查询文档

我们以根据id查询文档为例

5.2.1.语法说明

查询的请求语句如下:

GET /{索引库名}/_doc/{id}

与之前的流程类似,代码大概分2步:

  • 创建Request对象
  • 准备请求参数,这里是无参,直接省略
  • 发送请求

不过查询的目的是得到结果,解析为ItemDTO,还要再加一步对结果的解析。示例代码如下:

在这里插入图片描述

5.2.2.完整代码

item-serviceDocumentTest测试类中,编写单元测试:

@Test
void testGetDocumentById() throws IOException {
    // 1.准备Request对象
    GetRequest request = new GetRequest("items").id("100002644680");
    // 2.发送请求
    GetResponse response = client.get(request, RequestOptions.DEFAULT);
    // 3.获取响应结果中的source
    String json = response.getSourceAsString();
    
    ItemDoc itemDoc = JSONUtil.toBean(json, ItemDoc.class);
    System.out.println("itemDoc= " + ItemDoc);
}

5.3.删除文档

删除的请求语句如下:

DELETE /hotel/_doc/{id}

与查询相比,仅仅是请求方式从DELETE变成GET,可以想象Java代码应该依然是2步走:

  • 1)准备Request对象,因为是删除,这次是DeleteRequest对象。要指定索引库名和id
  • 2)准备参数,无参,直接省略
  • 3)发送请求。因为是删除,所以是client.delete()方法

item-serviceDocumentTest测试类中,编写单元测试:

@Test
void testDeleteDocument() throws IOException {
    // 1.准备Request,两个参数,第一个是索引库名,第二个是文档id
    DeleteRequest request = new DeleteRequest("item", "100002644680");
    // 2.发送请求
    client.delete(request, RequestOptions.DEFAULT);
}

5.4.修改文档

修改我们讲过两种方式:

  • 全量修改:本质是先根据id删除,再新增
  • 局部修改:修改文档中的指定字段值

在RestClient的API中,全量修改与新增的API完全一致,判断依据是ID:

  • 如果新增时,ID已经存在,则修改
  • 如果新增时,ID不存在,则新增

这里不再赘述,我们主要关注局部修改的API即可。

5.4.1.语法说明

局部修改的请求语法如下:

POST /{索引库名}/_update/{id}
{
  "doc": {
    "字段名": "字段值",
    "字段名": "字段值"
  }
}

代码示例如图:

在这里插入图片描述

与之前类似,也是三步走:

  • 1)准备Request对象。这次是修改,所以是UpdateRequest
  • 2)准备参数。也就是JSON文档,里面包含要修改的字段
  • 3)更新文档。这里调用client.update()方法
5.4.2.完整代码

item-serviceDocumentTest测试类中,编写单元测试:

@Test
void testUpdateDocument() throws IOException {
    // 1.准备Request
    UpdateRequest request = new UpdateRequest("items", "100002644680");
    // 2.准备请求参数
    request.doc(
            "price", 58800,
            "commentCount", 1
    );
    // 3.发送请求
    client.update(request, RequestOptions.DEFAULT);
}

5.5.批量导入文档

在之前的案例中,我们都是操作单个文档。而数据库中的商品数据实际会达到数十万条,某些项目中可能达到数百万条。

我们如果要将这些数据导入索引库,肯定不能逐条导入,而是采用批处理方案。常见的方案有:

  • 利用Logstash批量导入
    • 需要安装Logstash
    • 对数据的再加工能力较弱
    • 无需编码,但要学习编写Logstash导入配置
  • 利用JavaAPI批量导入
    • 需要编码,但基于JavaAPI,学习成本低
    • 更加灵活,可以任意对数据做再加工处理后写入索引库

接下来,我们就学习下如何利用JavaAPI实现批量文档导入。

5.5.1.语法说明

批处理与前面讲的文档的CRUD步骤基本一致:

  • 创建Request,但这次用的是BulkRequest
  • 准备请求参数
  • 发送请求,这次要用到client.bulk()方法

BulkRequest本身其实并没有请求参数,其本质就是将多个普通的CRUD请求组合在一起发送。例如:

  • 批量新增文档,就是给每个文档创建一个IndexRequest请求,然后封装到BulkRequest中,一起发出。
  • 批量删除,就是创建N个DeleteRequest请求,然后封装到BulkRequest,一起发出

因此BulkRequest中提供了add方法,用以添加其它CRUD的请求:

在这里插入图片描述

可以看到,能添加的请求有:

  • IndexRequest,也就是新增
  • UpdateRequest,也就是修改
  • DeleteRequest,也就是删除

因此Bulk中添加了多个IndexRequest,就是批量新增功能了。示例:

@Test
void testBulk() throws IOException {
    // 1.创建Request
    BulkRequest request = new BulkRequest();
    // 2.准备请求参数
    request.add(new IndexRequest("items").id("1").source("json doc1", XContentType.JSON));
    request.add(new IndexRequest("items").id("2").source("json doc2", XContentType.JSON));
    // 3.发送请求
    client.bulk(request, RequestOptions.DEFAULT);
}
5.5.2.完整代码
当我们要导入商品数据时,由于商品数量达到数十万,因此不可能一次性全部导入。建议采用循环遍历方式,每次导入1000条左右的数据。

item-serviceDocumentTest测试类中,编写单元测试:

@Test
void testLoadItemDocs() throws IOException {
    // 分页查询商品数据
    int pageNo = 1;
    int size = 1000;
    while (true) {
        Page<Item> page = itemService.lambdaQuery().eq(Item::getStatus, 1).page(new Page<Item>(pageNo, size));
        // 非空校验
        List<Item> items = page.getRecords();
        if (CollUtils.isEmpty(items)) {
            return;
        }
        log.info("加载第{}页数据,共{}条", pageNo, items.size());
        // 1.创建Request
        BulkRequest request = new BulkRequest("items");
        // 2.准备参数,添加多个新增的Request
        for (Item item : items) {
            // 2.1.转换为文档类型ItemDTO
            ItemDoc itemDoc = BeanUtil.copyProperties(item, ItemDoc.class);
            // 2.2.创建新增文档的Request对象
            request.add(new IndexRequest()
                            .id(itemDoc.getId())
                            .source(JSONUtil.toJsonStr(itemDoc), XContentType.JSON));
        }
        // 3.发送请求
        client.bulk(request, RequestOptions.DEFAULT);
        // 翻页
        pageNo++;
    }
}

5.6.小结

文档操作的基本步骤:

  • 初始化RestHighLevelClient
  • 创建XxxRequest。
    • XXX是IndexGetUpdateDeleteBulk
  • 准备参数(IndexUpdateBulk时需要)
  • 发送请求。
    • 调用RestHighLevelClient#.xxx()方法,xxx是indexgetupdatedeletebulk
  • 解析结果(Get时需要)

下篇

在上面的学习中,导入了大量数据到elasticsearch中,实现了商品数据的存储。不过查询商品数据时依然采用的是根据id查询,而非模糊搜索。
所以这里,我们来研究下elasticsearch的数据搜索功能。Elasticsearch提供了基于JSON的DSL(Domain Specific Language)语句来定义查询条件,其JavaAPI就是在组织DSL条件。

1.DSL查询

Elasticsearch的查询可以分为两大类:

  • 叶子查询(Leaf query clauses):一般是在特定的字段里查询特定值,属于简单查询,很少单独使用。
  • 复合查询(Compound query clauses):以逻辑方式组合多个叶子查询或者更改叶子查询的行为方式。

1.1.快速入门

我们依然在Kibana的DevTools中学习查询的DSL语法。首先来看查询的语法结构:

GET /{索引库名}/_search
{
  "query": {
    "查询类型": {
      // .. 查询条件
    }
  }
}

说明:

  • GET /{索引库名}/_search:其中的_search是固定路径,不能修改

例如,我们以最简单的无条件查询为例,无条件查询的类型是:match_all,因此其查询语句如下:

GET /items/_search
{
  "query": {
    "match_all": {
      
    }
  }
}

由于match_all无条件,所以条件位置不写即可。

执行结果如下:

在这里插入图片描述

你会发现虽然是match_all,但是响应结果中并不会包含索引库中的所有文档,而是仅有10条。这是因为处于安全考虑,elasticsearch设置了默认的查询页数。

1.2.叶子查询

叶子查询的类型也可以做进一步细分,详情大家可以查看官方文档:

https://www.elastic.co/guide/en/elasticsearch/reference/7.12/query-dsl.html

如图:

在这里插入图片描述

这里列举一些常见的,例如:

  • 全文检索查询(Full Text Queries):利用分词器对用户输入搜索条件先分词,得到词条,然后再利用倒排索引搜索词条。例如:
    • match
    • multi_match
  • 精确查询(Term-level queries):不对用户输入搜索条件分词,根据字段内容精确值匹配。但只能查找keyword、数值、日期、boolean类型的字段。例如:
    • ids
    • term
    • range
  • **地理坐标查询:**用于搜索地理位置,搜索方式很多,例如:
    • geo_bounding_box:按矩形搜索
    • geo_distance:按点和半径搜索
  • …略
1.2.1.全文检索查询

全文检索的种类也很多,详情可以参考官方文档:

https://www.elastic.co/guide/en/elasticsearch/reference/7.12/full-text-queries.html

以全文检索中的match为例,语法如下:

GET /{索引库名}/_search
{
  "query": {
    "match": {
      "字段名": "搜索条件"
    }
  }
}

示例:

在这里插入图片描述

match类似的还有multi_match,区别在于可以同时对多个字段搜索,而且多个字段都要满足,语法示例:

GET /{索引库名}/_search
{
  "query": {
    "multi_match": {
      "query": "搜索条件",
      "fields": ["字段1", "字段2"]
    }
  }
}

示例:

在这里插入图片描述

注意,上面显示的有匹配分数,分数高的在前面。
1.2.2.精确查询

精确查询,英文是Term-level query,顾名思义,词条级别的查询。也就是说不会对用户输入的搜索条件再分词,而是作为一个词条,与搜索的字段内容精确值匹配。因此推荐查找keyword、数值、日期、boolean类型的字段。例如:

  • id
  • price
  • 城市
  • 地名
  • 人名

等等,作为一个整体才有含义的字段。

详情可以查看官方文档:

https://www.elastic.co/guide/en/elasticsearch/reference/7.12/term-level-queries.html

term查询为例,其语法如下:

GET /{索引库名}/_search
{
  "query": {
    "term": {
      "字段名": {
        "value": "搜索条件"
      }
    }
  }
}

示例:

在这里插入图片描述

当你输入的搜索条件不是词条,而是短语时,由于不做分词,你反而搜索不到:

在这里插入图片描述

再来看下range查询,语法如下:

GET /{索引库名}/_search
{
  "query": {
    "range": {
      "字段名": {
        "gte": {最小值},
        "lte": {最大值}
      }
    }
  }
}

range是范围查询,对于范围筛选的关键字有:

  • gte:大于等于
  • gt:大于
  • lte:小于等于
  • lt:小于

示例:

在这里插入图片描述

1.3.复合查询

复合查询大致可以分为两类:

  • 第一类:基于逻辑运算组合叶子查询,实现组合条件,例如
    • bool
  • 第二类:基于某种算法修改查询时的文档相关性算分,从而改变文档排名。例如:
    • function_score
    • dis_max
其它复合查询及相关语法可以参考官方文档。
1.3.1.算分函数查询(选讲)

当我们利用match查询时,文档结果会根据与搜索词条的关联度打分_score),返回结果时按照分值降序排列。

例如,我们搜索 “手机”,结果如下:

在这里插入图片描述

从elasticsearch5.1开始,采用的相关性打分算法是BM25算法,公式如下:

在这里插入图片描述

基于这套公式,就可以判断出某个文档与用户搜索的关键字之间的关联度,还是比较准确的。但是,在实际业务需求中,常常会有竞价排名的功能。不是相关度越高排名越靠前,而是掏的钱多的排名靠前。

例如在百度中搜索Java培训,排名靠前的就是广告推广:

在这里插入图片描述

要想认为控制相关性算分,就需要利用elasticsearch中的function score 查询了。

基本语法

function score 查询中包含四部分内容:

  • 原始查询条件:query部分,基于这个条件搜索文档,并且基于BM25算法给文档打分,原始算分(query score)
  • 过滤条件:filter部分,符合该条件的文档才会重新算分
  • 算分函数:符合filter条件的文档要根据这个函数做运算,得到的函数算分(function score),有四种函数
    • weight:函数结果是常量
    • field_value_factor:以文档中的某个字段值作为函数结果
    • random_score:以随机数作为函数结果
    • script_score:自定义算分函数算法
  • 运算模式:算分函数的结果、原始查询的相关性算分,两者之间的运算方式,包括:
    • multiply:相乘
    • replace:用function score替换query score
    • 其它,例如:sum、avg、max、min

function score的运行流程如下:

  • 1)根据原始条件查询搜索文档,并且计算相关性算分,称为原始算分(query score)
  • 2)根据过滤条件,过滤文档
  • 3)符合过滤条件的文档,基于算分函数运算,得到函数算分(function score)
  • 4)将原始算分(query score)和函数算分(function score)基于运算模式做运算,得到最终结果,作为相关性算分。

因此,其中的关键点是:

  • 过滤条件:决定哪些文档的算分被修改
  • 算分函数:决定函数算分的算法
  • 运算模式:决定最终算分结果

示例:给IPhone这个品牌的手机算分提高十倍,分析如下:

  • 过滤条件:品牌必须为IPhone
  • 算分函数:常量weight,值为10
  • 算分模式:相乘multiply

对应代码如下:

GET /hotel/_search
{
  "query": {
    "function_score": {
      "query": {  .... }, // 原始查询,可以是任意条件
      "functions": [ // 算分函数
        {
          "filter": { // 满足的条件,品牌必须是Iphone
            "term": {
              "brand": "Iphone"
            }
          },
          "weight": 10 // 算分权重为2
        }
      ],
      "boost_mode": "multipy" // 加权模式,求乘积
    }
  }
}
1.3.2.bool查询

bool查询,即布尔查询。就是利用逻辑运算来组合一个或多个查询子句的组合。bool查询支持的逻辑运算有:

  • must:必须匹配每个子查询,类似“与”
  • should:选择性匹配子查询,类似“或”
  • must_not:必须不匹配,不参与算分,类似“非”
  • filter:必须匹配,不参与算分

bool查询的语法如下:

GET /items/_search
{
  "query": {
    "bool": {
      "must": [
        {"match": {"name": "手机"}}
      ],
      "should": [
        {"term": {"brand": { "value": "vivo" }}},
        {"term": {"brand": { "value": "小米" }}}
      ],
      "must_not": [
        {"range": {"price": {"gte": 2500}}}
      ],
      "filter": [
        {"range": {"price": {"lte": 1000}}}
      ]
    }
  }
}

出于性能考虑,与搜索关键字无关的查询尽量采用must_not或filter逻辑运算,避免参与相关性算分。

例如黑马商城的搜索页面:

在这里插入图片描述

其中输入框的搜索条件肯定要参与相关性算分,可以采用match。但是价格范围过滤、品牌过滤、分类过滤等尽量采用filter,不要参与相关性算分。

比如,我们要搜索手机,但品牌必须是华为,价格必须是900~1599,那么可以这样写:

GET /items/_search
{
  "query": {
    "bool": {
      "must": [
        {"match": {"name": "手机"}}
      ],
      "filter": [
        {"term": {"brand": { "value": "华为" }}},
        {"range": {"price": {"gte": 90000, "lt": 159900}}}
      ]
    }
  }
}

1.4.排序

elasticsearch默认是根据相关度算分(_score)来排序,但是也支持自定义方式对搜索结果排序。不过分词字段无法排序,能参与排序字段类型有:keyword类型、数值类型、地理坐标类型、日期类型等。

详细说明可以参考官方文档:

https://www.elastic.co/guide/en/elasticsearch/reference/7.12/sort-search-results.html

语法说明:

GET /indexName/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "排序字段": {
        "order": "排序方式asc和desc"
      }
    }
  ]
}

示例,我们按照商品价格排序:

GET /items/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "price": {
        "order": "desc"
      }
    }
  ]
}

1.5.分页

elasticsearch 默认情况下只返回top10的数据。而如果要查询更多数据就需要修改分页参数了。

1.5.1.基础分页

elasticsearch中通过修改fromsize参数来控制要返回的分页结果:

  • from:从第几个文档开始
  • size:总共查询几个文档

类似于mysql中的limit ?, ?

官方文档如下:

https://www.elastic.co/guide/en/elasticsearch/reference/7.12/paginate-search-results.html

语法如下:

GET /items/_search
{
  "query": {
    "match_all": {}
  },
  "from": 0, // 分页开始的位置,默认为0
  "size": 10,  // 每页文档数量,默认10
  "sort": [
    {
      "price": {
        "order": "desc"
      }
    }
  ]
}
1.5.2.深度分页

elasticsearch的数据一般会采用分片存储,也就是把一个索引中的数据分成N份,存储到不同节点上。这种存储方式比较有利于数据扩展,但给分页带来了一些麻烦。

比如一个索引库中有100000条数据,分别存储到4个分片,每个分片25000条数据。现在每页查询10条,查询第99页。那么分页查询的条件如下:

GET /items/_search
{
  "from": 990, // 从第990条开始查询
  "size": 10, // 每页查询10条
  "sort": [
    {
      "price": "asc"
    }
  ]
}

从语句来分析,要查询第990~1000名的数据。

从实现思路来分析,肯定是将所有数据排序,找出前1000名,截取其中的990~1000的部分。但问题来了,我们如何才能找到所有数据中的前1000名呢?

要知道每一片的数据都不一样,第1片上的第9001000,在另1个节点上并不一定依然是9001000名。所以我们只能在每一个分片上都找出排名前1000的数据,然后汇总到一起,重新排序,才能找出整个索引库中真正的前1000名,此时截取990~1000的数据即可。

如图:

在这里插入图片描述

试想一下,假如我们现在要查询的是第999页数据呢,是不是要找第9990~10000的数据,那岂不是需要把每个分片中的前10000名数据都查询出来,汇总在一起,在内存中排序?如果查询的分页深度更深呢,需要一次检索的数据岂不是更多?

由此可知,当查询分页深度较大时,汇总数据过多,对内存和CPU会产生非常大的压力。

因此elasticsearch会禁止from+ size 超过10000的请求。

针对深度分页,elasticsearch提供了两种解决方案:

  • search after:分页时需要排序,原理是从上一次的排序值开始,查询下一页数据。官方推荐使用的方式。
  • scroll:原理将排序后的文档id形成快照,保存下来,基于快照做分页。官方已经不推荐使用。

在这里插入图片描述

详情见文档:

https://www.elastic.co/guide/en/elasticsearch/reference/7.12/paginate-search-results.html

总结:

大多数情况下,我们采用普通分页就可以了。查看百度、京东等网站,会发现其分页都有限制。例如百度最多支持77页,每页不足20条。京东最多100页,每页最多60条。

因此,一般我们采用限制分页深度的方式即可,无需实现深度分页。

1.6.高亮

1.6.1.高亮原理

什么是高亮显示呢?

我们在百度,京东搜索时,关键字会变成红色,比较醒目,这叫高亮显示:

在这里插入图片描述

观察页面源码,你会发现两件事情:

  • 高亮词条都被加了<em>标签
  • <em>标签都添加了红色样式

css样式肯定是前端实现页面的时候写好的,但是前端编写页面的时候是不知道页面要展示什么数据的,不可能给数据加标签。而服务端实现搜索功能,要是有elasticsearch做分词搜索,是知道哪些词条需要高亮的。

因此词条的高亮标签肯定是由服务端提供数据的时候已经加上的

因此实现高亮的思路就是:

  • 用户输入搜索关键字搜索数据
  • 服务端根据搜索关键字到elasticsearch搜索,并给搜索结果中的关键字词条添加html标签
  • 前端提前给约定好的html标签添加CSS样式
1.6.2.实现高亮

事实上elasticsearch已经提供了给搜索关键字加标签的语法,无需我们自己编码。

基本语法如下:

GET /{索引库名}/_search
{
  "query": {
    "match": {
      "搜索字段": "搜索关键字"
    }
  },
  "highlight": {
    "fields": {
      "高亮字段名称": {
        "pre_tags": "<em>",
        "post_tags": "</em>"
      }
    }
  }
}

注意

  • 搜索必须有查询条件,而且是全文检索类型的查询条件,例如match
  • 参与高亮的字段必须是text类型的字段
  • 默认情况下参与高亮的字段要与搜索字段一致,除非添加:required_field_match=false

示例:

在这里插入图片描述

其他:

在这里插入图片描述

除了上面的,我们还可以用_source指定select的属性。

1.7.总结

查询的DSL是一个大的JSON对象,包含下列属性:

  • query:查询条件
  • fromsize:分页条件
  • sort:排序条件
  • highlight:高亮条件

示例:

在这里插入图片描述

2.RestClient查询

文档的查询依然使用昨天学习的 RestHighLevelClient对象,查询的基本步骤如下:

  • 1)创建request对象,这次是搜索,所以是SearchRequest
  • 2)准备请求参数,也就是查询DSL对应的JSON参数
  • 3)发起请求
  • 4)解析响应,响应结果相对复杂,需要逐层解析

2.1.快速入门

之前说过,由于Elasticsearch对外暴露的接口都是Restful风格的接口,因此JavaAPI调用就是在发送Http请求。而我们核心要做的就是利用利用Java代码组织请求参数解析响应结果

这个参数的格式完全参考DSL查询语句的JSON结构,因此我们在学习的过程中,会不断的把JavaAPI与DSL语句对比。大家在学习记忆的过程中,也应该这样对比学习。

2.1.1.发送请求

首先以match_all查询为例,其DSL和JavaAPI的对比如图:

在这里插入图片描述

代码解读:

  • 第一步,创建SearchRequest对象,指定索引库名
  • 第二步,利用request.source()构建DSL,DSL中可以包含查询、分页、排序、高亮等
    • query():代表查询条件,利用QueryBuilders.matchAllQuery()构建一个match_all查询的DSL
  • 第三步,利用client.search()发送请求,得到响应

这里关键的API有两个,一个是request.source(),它构建的就是DSL中的完整JSON参数。其中包含了querysortfromsizehighlight等所有功能:

在这里插入图片描述

另一个是QueryBuilders,其中包含了我们学习过的各种叶子查询复合查询等:

在这里插入图片描述

2.1.2.解析响应结果

在发送请求以后,得到了响应结果SearchResponse,这个类的结构与我们在kibana中看到的响应结果JSON结构完全一致:

{
    "took" : 0,
    "timed_out" : false,
    "hits" : {
        "total" : {
            "value" : 2,
            "relation" : "eq"
        },
        "max_score" : 1.0,
        "hits" : [
            {
                "_index" : "heima",
                "_type" : "_doc",
                "_id" : "1",
                "_score" : 1.0,
                "_source" : {
                "info" : "Java讲师",
                "name" : "赵云"
                }
            }
        ]
    }
}

因此,我们解析SearchResponse的代码就是在解析这个JSON结果,对比如下:

在这里插入图片描述

代码解读

elasticsearch返回的结果是一个JSON字符串,结构包含:

  • hits:命中的结果
    • total:总条数,其中的value是具体的总条数值
    • max_score:所有结果中得分最高的文档的相关性算分
    • hits:搜索结果的文档数组,其中的每个文档都是一个json对象
      • _source:文档中的原始数据,也是json对象

因此,我们解析响应结果,就是逐层解析JSON字符串,流程如下:

  • SearchHits:通过response.getHits()获取,就是JSON中的最外层的hits,代表命中的结果
    • SearchHits#getTotalHits().value:获取总条数信息
    • SearchHits#getHits():获取SearchHit数组,也就是文档数组
      • SearchHit#getSourceAsString():获取文档结果中的_source,也就是原始的json文档数据

2.2.叶子查询

所有的查询条件都是由QueryBuilders来构建的,叶子查询也不例外。因此整套代码中变化的部分仅仅是query条件构造的方式,其它不动。

例如match查询:

@Test
void testMatch() throws IOException {
    // 1.创建Request
    SearchRequest request = new SearchRequest("items");
    // 2.组织请求参数
    request.source().query(QueryBuilders.matchQuery("name", "脱脂牛奶"));
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
}

再比如multi_match查询:

@Test
void testMultiMatch() throws IOException {
    // 1.创建Request
    SearchRequest request = new SearchRequest("items");
    // 2.组织请求参数
    request.source().query(QueryBuilders.multiMatchQuery("脱脂牛奶", "name", "category"));
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
}

在这里插入图片描述

还有range查询:

@Test
void testRange() throws IOException {
    // 1.创建Request
    SearchRequest request = new SearchRequest("items");
    // 2.组织请求参数
    request.source().query(QueryBuilders.rangeQuery("price").gte(10000).lte(30000));
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
}

还有term查询:

@Test
void testTerm() throws IOException {
    // 1.创建Request
    SearchRequest request = new SearchRequest("items");
    // 2.组织请求参数
    request.source().query(QueryBuilders.termQuery("brand", "华为"));
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
}

2.3.复合查询

复合查询也是由QueryBuilders来构建,我们以bool查询为例,DSL和JavaAPI的对比如图:

在这里插入图片描述

完整代码如下:

@Test
void testBool() throws IOException {
    // 1.创建Request
    SearchRequest request = new SearchRequest("items");
    // 2.组织请求参数
    // 2.1.准备bool查询
    BoolQueryBuilder bool = QueryBuilders.boolQuery();
    // 2.2.关键字搜索
    bool.must(QueryBuilders.matchQuery("name", "脱脂牛奶"));
    // 2.3.品牌过滤
    bool.filter(QueryBuilders.termQuery("brand", "德亚"));
    // 2.4.价格过滤
    bool.filter(QueryBuilders.rangeQuery("price").lte(30000));
    request.source().query(bool);
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
}

2.4.排序和分页

之前说过,requeset.source()就是整个请求JSON参数,所以排序、分页都是基于这个来设置,其DSL和JavaAPI的对比如下:

在这里插入图片描述

完整示例代码:

@Test
void testPageAndSort() throws IOException {
    int pageNo = 1, pageSize = 5;

    // 1.创建Request
    SearchRequest request = new SearchRequest("items");
    // 2.组织请求参数
    // 2.1.搜索条件参数
    request.source().query(QueryBuilders.matchQuery("name", "脱脂牛奶"));
    // 2.2.排序参数
    request.source().sort("price", SortOrder.ASC);
    // 2.3.分页参数
    request.source().from((pageNo - 1) * pageSize).size(pageSize);
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
}

2.5.高亮

高亮查询与前面的查询有两点不同:

  • 条件同样是在request.source()中指定,只不过高亮条件要基于HighlightBuilder来构造
  • 高亮响应结果与搜索的文档结果不在一起,需要单独解析

首先来看高亮条件构造,其DSL和JavaAPI的对比如图:

在这里插入图片描述

示例代码如下:

@Test
void testHighlight() throws IOException {
    // 1.创建Request
    SearchRequest request = new SearchRequest("items");
    // 2.组织请求参数
    // 2.1.query条件
    request.source().query(QueryBuilders.matchQuery("name", "脱脂牛奶"));
    // 2.2.高亮条件
    request.source().highlighter(
            SearchSourceBuilder.highlight()
                    .field("name")
                    .preTags("<em>")
                    .postTags("</em>")
    );
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
}
注意,一般我们取的是source,它是源,不会显示< em > 的。

再来看结果解析,文档解析的部分不变,主要是高亮内容需要单独解析出来,其DSL和JavaAPI的对比如图:

在这里插入图片描述

代码解读:

  • 3、4步:从结果中获取_sourcehit.getSourceAsString(),这部分是非高亮结果,json字符串。还需要反序列为ItemDoc对象
  • 5步:获取高亮结果。hit.getHighlightFields(),返回值是一个Map,key是高亮字段名称,值是HighlightField对象,代表高亮值
  • 5.1步:从Map中根据高亮字段名称,获取高亮字段值对象HighlightField
  • 5.2步:从HighlightField中获取Fragments,并且转为字符串。这部分就是真正的高亮字符串了
  • 最后:用高亮的结果替换ItemDoc中的非高亮结果

完整代码如下:

private void handleResponse(SearchResponse response) {
    SearchHits searchHits = response.getHits();
    // 1.获取总条数
    long total = searchHits.getTotalHits().value;
    System.out.println("共搜索到" + total + "条数据");
    // 2.遍历结果数组
    SearchHit[] hits = searchHits.getHits();
    for (SearchHit hit : hits) {
        // 3.得到_source,也就是原始json文档
        String source = hit.getSourceAsString();
        // 4.反序列化
        ItemDoc item = JSONUtil.toBean(source, ItemDoc.class);
        // 5.获取高亮结果
        Map<String, HighlightField> hfs = hit.getHighlightFields();
        if (CollUtils.isNotEmpty(hfs)) {
            // 5.1.有高亮结果,获取name的高亮结果
            HighlightField hf = hfs.get("name");
            if (hf != null) {
                // 5.2.获取第一个高亮结果片段,就是商品名称的高亮值
                String hfName = hf.getFragments()[0].string();
                item.setName(hfName);
            }
        }
        System.out.println(item);
    }
}
注意,因为es高亮默认的是数组,如果字段短的话,就取出第一个元素,但如果长的话,就要想其他办法。

3.数据聚合

聚合(aggregations)可以让我们极其方便的实现对数据的统计、分析、运算。例如:

  • 什么品牌的手机最受欢迎?
  • 这些手机的平均价格、最高价格、最低价格?
  • 这些手机每月的销售情况如何?

实现这些统计功能的比数据库的sql要方便的多,而且查询速度非常快,可以实现近实时搜索效果。

官方文档:

https://www.elastic.co/guide/en/elasticsearch/reference/7.12/search-aggregations.html

聚合常见的有三类:

  • 桶(Bucket**)**聚合:用来对文档做分组
    • TermAggregation:按照文档字段值分组,例如按照品牌值分组、按照国家分组
    • Date Histogram:按照日期阶梯分组,例如一周为一组,或者一月为一组
  • 度量(Metric)**聚合:用以计算一些值,比如:最大值、最小值、平均值等
    • Avg:求平均值
    • Max:求最大值
    • Min:求最小值
    • Stats:同时求maxminavgsum
  • 管道(pipeline**)**聚合:其它聚合的结果为基础做进一步运算
**注意:**参加聚合的字段必须是keyword、日期、数值、布尔类型

3.1.DSL实现聚合

与之前的搜索功能类似,我们依然先学习DSL的语法,再学习JavaAPI.

3.1.1.Bucket聚合

例如我们要统计所有商品中共有哪些商品分类,其实就是以分类(category)字段对数据分组。category值一样的放在同一组,属于Bucket聚合中的Term聚合。

基本语法如下:

GET /items/_search
{
  "size": 0, 
  "aggs": {
    "category_agg": {
      "terms": {
        "field": "category",
        "size": 20
      }
    }
  }
}

语法说明:

  • size:设置size为0,就是每页查0条,则结果中就不包含文档,只包含聚合
  • aggs:定义聚合

    • category_agg:聚合名称,自定义,但不能重复
      • terms:聚合的类型,按分类聚合,所以用term
        • field:参与聚合的字段名称
        • size:希望返回的分类的最大数量

来看下查询的结果:

在这里插入图片描述

3.1.2.带条件聚合

默认情况下,Bucket聚合是对索引库的所有文档做聚合,例如我们统计商品中所有的品牌,结果如下:

在这里插入图片描述

可以看到统计出的品牌非常多。

但真实场景下,用户会输入搜索条件,因此聚合必须是对搜索结果聚合。那么聚合必须添加限定条件。

例如,我想知道价格高于3000元的手机品牌有哪些,该怎么统计呢?

我们需要从需求中分析出搜索查询的条件和聚合的目标:

  • 搜索查询条件:
    • 价格高于3000
    • 必须是手机
  • 聚合目标:统计的是品牌,肯定是对brand字段做term聚合

语法如下:

GET /items/_search
{
  "query": {
    "bool": {
      "filter": [
        {
          "term": {
            "category": "手机"
          }
        },
        {
          "range": {
            "price": {
              "gte": 300000
            }
          }
        }
      ]
    }
  }, 
  "size": 0, 
  "aggs": {
    "brand_agg": {
      "terms": {
        "field": "brand",
        "size": 20
      }
    }
  }
}

聚合结果如下:

{
  "took" : 2,
  "timed_out" : false,
  "hits" : {
    "total" : {
      "value" : 13,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "brand_agg" : {
      "doc_count_error_upper_bound" : 0,
      "sum_other_doc_count" : 0,
      "buckets" : [
        {
          "key" : "华为",
          "doc_count" : 7
        },
        {
          "key" : "Apple",
          "doc_count" : 5
        },
        {
          "key" : "小米",
          "doc_count" : 1
        }
      ]
    }
  }
}

可以看到,结果中只剩下3个品牌了。

3.1.3.Metric聚合

上节课,我们统计了价格高于3000的手机品牌,形成了一个个桶。现在我们需要对桶内的商品做运算,获取每个品牌价格的最小值、最大值、平均值。

这就要用到Metric聚合了,例如stat聚合,就可以同时获取minmaxavg等结果。

语法如下:

GET /items/_search
{
  "query": {
    "bool": {
      "filter": [
        {
          "term": {
            "category": "手机"
          }
        },
        {
          "range": {
            "price": {
              "gte": 300000
            }
          }
        }
      ]
    }
  }, 
  "size": 0, 
  "aggs": {
    "brand_agg": {
      "terms": {
        "field": "brand",
        "size": 20
      },
      "aggs": {
        "stats_meric": {
          "stats": {
            "field": "price"
          }
        }
      }
    }
  }
}

query部分就不说了,我们重点解读聚合部分语法。

可以看到我们在brand_agg聚合的内部,我们新加了一个aggs参数。这个聚合就是brand_agg的子聚合,会对brand_agg形成的每个桶中的文档分别统计。

  • stats_meric:聚合名称
    • stats:聚合类型,stats是metric聚合的一种
      • field:聚合字段,这里选择price,统计价格

由于stats是对brand_agg形成的每个品牌桶内文档分别做统计,因此每个品牌都会统计出自己的价格最小、最大、平均值。

结果如下:

在这里插入图片描述

另外,我们还可以让聚合按照每个品牌的价格平均值排序:

在这里插入图片描述

3.1.4.总结

aggs代表聚合,与query同级,此时query的作用是?

  • 限定聚合的的文档范围

聚合必须的三要素:

  • 聚合名称
  • 聚合类型
  • 聚合字段

聚合可配置属性有:

  • size:指定聚合结果数量
  • order:指定聚合结果排序方式
  • field:指定聚合字段

3.2.RestClient实现聚合

可以看到在DSL中,aggs聚合条件与query条件是同一级别,都属于查询JSON参数。因此依然是利用request.source()方法来设置。

不过聚合条件的要利用AggregationBuilders这个工具类来构造。DSL与JavaAPI的语法对比如下:

在这里插入图片描述

聚合结果与搜索文档同一级别,因此需要单独获取和解析。具体解析语法如下:

在这里插入图片描述

完整代码如下:

@Test
void testAgg() throws IOException {
    // 1.创建Request
    SearchRequest request = new SearchRequest("items");
    // 2.准备请求参数
    BoolQueryBuilder bool = QueryBuilders.boolQuery()
            .filter(QueryBuilders.termQuery("category", "手机"))
            .filter(QueryBuilders.rangeQuery("price").gte(300000));
    request.source().query(bool).size(0);
    // 3.聚合参数
    request.source().aggregation(
            AggregationBuilders.terms("brand_agg").field("brand").size(5)
    );
    // 4.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 5.解析聚合结果
    Aggregations aggregations = response.getAggregations();
    // 5.1.获取品牌聚合,注意,这里的类型是之前分组的类型
    Terms brandTerms = aggregations.get("brand_agg");
    // 5.2.获取聚合中的桶
    List<? extends Terms.Bucket> buckets = brandTerms.getBuckets();
    // 5.3.遍历桶内数据
    for (Terms.Bucket bucket : buckets) {
        // 5.4.获取桶内key
        String brand = bucket.getKeyAsString();
        System.out.print("brand = " + brand);
        long count = bucket.getDocCount();
        System.out.println("; count = " + count);
    }
}

补充:模糊查询:

// 创建搜索请求对象
SearchRequest request = new SearchRequest();
request.indices("student");
// 构建查询的请求体
SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
sourceBuilder.query(QueryBuilders.fuzzyQuery("name","zhangsan").fuzziness(Fuzziness.ONE));
request.source(sourceBuilder);
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
// 查询匹配
SearchHits hits = response.getHits();
System.out.println("took:" + response.getTook());
System.out.println("timeout:" + response.isTimedOut());
System.out.println("total:" + hits.getTotalHits());
System.out.println("MaxScore:" + hits.getMaxScore());
System.out.println("hits========>>");
for (SearchHit hit : hits) {
//输出每条查询的结果信息
System.out.println(hit.getSourceAsString());
}
System.out.println("<<========");

进阶:

1.分片副本:

Elasticsearch 允许你创建分片的一份或多份拷贝,这些拷贝叫做复制分片(副本)。
每个索引可以被分成多个分片。一个索引也可以被复制 0 次(意思是没有复制)或多次。一旦复制了,每个索引就有了主分片(作为复制源的原来的分片)和复制分片(主分片的拷贝)之别。分片和复制的数量可以在索引创建的时候指定。在索引创建之后,你可以在任何时候动态地改变复制的数量,但是你事后不能改变分片的数量。默认情况下,Elasticsearch 中的每个索引被分片 1 个主分片和 1 个复制,这意味着,如果你的集群中至少有两个节点,你的索引将会有 1 个主分片和另外 1 个复制分片(1 个完全拷贝),这样的话每个索引总共就有 2 个分片,我们需要根据索引需要确定分片个数。
分片(Shard)

分片是 Elasticsearch 将索引数据水平切分为多个部分的基本单元。

  • 作用:分片允许将数据分布在多台服务器上,从而实现水平扩展。通过分片,Elasticsearch 可以处理比单个节点更多的数据量,并且可以分担搜索和索引的负载。
  • 主分片(Primary Shard):每个索引在创建时会被划分为多个主分片。主分片是数据的主要存储地,所有的数据写入首先会到主分片。
  • 分片数量:分片数量在索引创建时确定,后续无法修改,因此需要根据数据量和访问模式谨慎设计分片数量。
副本(Replica)

副本是主分片的拷贝,用于提高数据的高可用性和查询性能。

  • 作用:副本为数据提供冗余,以防止单个节点故障导致的数据丢失。此外,副本分片还可以分担读请求,提高查询性能。
  • 副本分片(Replica Shard):每个主分片可以有一个或多个副本分片。副本分片与主分片存储相同的数据,但不会存储在与主分片相同的节点上,以防止节点故障。
  • 副本数量:副本数量可以动态调整。默认情况下,每个主分片有一个副本分片。
工作原理
  • 当一个文档被索引时,Elasticsearch 会将文档存储到一个特定的主分片中。然后,这个主分片会将数据复制到它的副本分片中。
  • 查询请求可以被发送到主分片或副本分片,从而提高查询的并发性和响应速度。
示例

假设一个索引有 5 个主分片和 1 个副本分片,这意味着总共有 10 个分片(5 个主分片 + 5 个副本分片),这些分片会分布在集群中的不同节点上。

在只有一个节点的 Elasticsearch 集群中,即使配置了副本分片,副本分片也不会被分配。这是因为副本分片的主要作用是提供数据的冗余和容错能力。如果集群只有一个节点,副本分片就没有额外的节点来进行备份。

2.分配(Allocation)

将分片分配给某个节点的过程,包括分配主分片或者副本。如果是副本,还包含从主分片复制数据的过程。这个过程是由 master 节点完成的。

在这里插入图片描述

副本和分片不会保存在一起,防止出事一起挂掉。

一个运行中的 Elasticsearch 实例称为一个节点,而集群是由一个或者多个拥有相同cluster.name 配置的节点组成, 它们共同承担数据和负载的压力。当有节点加入集群中或者从集群中移除节点时,集群将会重新平均分布所有的数据

当一个节点被选举成为主节点时, 它将负责管理集群范围内的所有变更,例如增加、删除索引,或者增加、删除节点等。 而主节点并不需要涉及到文档级别的变更和搜索等操作,所以当集群只拥有一个主节点的情况下,即使流量的增加它也不会成为瓶颈。 任何节点都可以成为主节点。我们的示例集群就只有一个节点,所以它同时也成为了主节点。

作为用户,我们可以将请求发送到集群中的任何节点 ,包括主节点。 每个节点都知道任意文档所处的位置,并且能够将我们的请求直接转发到存储我们所需文档的节点。 无论我们将请求发送到哪个节点,它都能负责从各个包含我们所需文档的节点收集回数据,并将最终结果返回給客户端。 Elasticsearch 对这一切的管理都是透明的。

3.分布式集群

3.1 单节点集群:
我们在包含一个空节点的集群内创建名为 users 的索引,为了演示目的,我们将分配 3个主分片和一份副本(每个主分片拥有一个副本分片):
{
 "settings" : {
 "number_of_shards" : 3,
 "number_of_replicas" : 1
 }
}

在这里插入图片描述

在这里插入图片描述

3.2 故障转移

当集群中只有一个节点在运行时,意味着会有一个单点故障问题——没有冗余。 幸运的是,我们只需再启动一个节点即可防止数据丢失。当你在同一台机器上启动了第二个节点时,只要它和第一个节点有同样的 cluster.name 配置,它就会自动发现集群并加入到其中。

但是在不同机器上启动节点的时候,为了加入到同一集群,你需要配置一个可连接到的单播主机列表。之所以配置为使用单播发现,以防止节点无意中加入集群。只有在同一台机器上运行的节点才会自动组成集群。

如果启动了第二个节点,我们的集群将会拥有两个节点的集群 : 所有主分片和副本分片都已被分配。

在这里插入图片描述

3.3 水平扩容

怎样为我们的正在增长中的应用程序按需扩容呢?当启动了第三个节点,我们的集群将会拥有三个节点的集群 : 为了分散负载而对分片进行重新分配
在这里插入图片描述

但是如果我们想要扩容超过 6 个节点怎么办呢?

主分片的数目在索引创建时就已经确定了下来。实际上,这个数目定义了这个索引能够存储 的最大数据量。(实际大小取决于你的数据、硬件和使用场景。) 但是,读操作——搜索和返回数据——可以同时被主分片 或 副本分片所处理,所以当你拥有越多的副本分片时,也将拥有越高的吞吐量。

在运行中的集群上是可以动态调整副本分片数目的,我们可以按需伸缩集群。让我们把副本数从默认的 1 增加到 2
{
 "number_of_replicas" : 2
}

users 索引现在拥有 9 个分片:3 个主分片和 6 个副本分片。 这意味着我们可以将集群扩容到 9 个节点,每个节点上一个分片。相比原来 3 个节点时,集群搜索性能可以提升 3 倍。

在这里插入图片描述

3.4 应对故障
我们关闭第一个节点,这时集群的状态为:关闭了一个节点后的集群。

我们关闭的节点是一个主节点。而集群必须拥有一个主节点来保证正常工作,所以发生的第一件事情就是选举一个新的主节点: Node 2 。在我们关闭 Node 1 的同时也失去了主分片 1 和 2 ,并且在缺失主分片的时候索引也不能正常工作。 如果此时来检查集群的状况,我们看到的状态将会为 red :不是所有主分片都在正常工作。

在这里插入图片描述

幸运的是,在其它节点上存在着这两个主分片的完整副本, 所以新的主节点立即将这些分片在 Node 2 和 Node 3 上对应的副本分片提升为主分片, 此时集群的状态将会为yellow。这个提升主分片的过程是瞬间发生的,如同按下一个开关一般。

为什么我们集群状态是 yellow 而不是 green

虽然我们拥有所有的三个主分片,但是同时设置了每个主分片需要对应 2 份副本分片,而此时只存在一份副本分片。 所以集群不能为 green 的状态,不过我们不必过于担心:如果我们同样关闭了 Node 2 ,我们的程序 依然 可以保持在不丢任何数据的情况下运行,因为Node 3 为每一个分片都保留着一份副本。

如果我们重新启动 Node 1 ,集群可以将缺失的副本分片再次进行分配,那么集群的状态也将恢复成之前的状态。 如果 Node 1 依然拥有着之前的分片,它将尝试去重用它们,同时仅从主分片复制发生了修改的数据文件。和之前的集群相比,只是 Master 节点切换了。
3.5.路由计算:

在这里插入图片描述

routing 是一个可变值,默认是文档的 _id ,也可以设置成一个自定义的值。 routing 通过hash 函数生成一个数字,然后这个数字再除以 number_of_primary_shards (主分片的数量)后得到余数 。

这就解释了为什么我们要在创建索引的时候就确定好主分片的数量 并且永远不会改变这个数量:因为如果数量变化了,那么所有之前路由的值都会无效,文档也再也找不到了。

所有的文档 API( get 、 index 、 delete 、 bulk 、 update 以及 mget )都接受一个叫做 routing 的路由参数 ,通过这个参数我们可以自定义文档到分片的映射。一个自定义的路由参数可以用来确保所有相关的文档——例如所有属于同一个用户的文档——都被存储到同一个分片中。

3.6.分片控制:

我们假设有一个集群由三个节点组成。 它包含一个叫 emps 的索引,有两个主分片,每个主分片有两个副本分片。相同分片的副本不会放在同一节点。

我们可以发送请求到集群中的任一节点。 每个节点都有能力处理任意请求。 每个节点都知道集群中任一文档位置,所以可以直接将请求转发到需要的节点上。 我们可以访问任何一个节点,我们将其称为 协调节点(coordinating node) 。

当发送请求的时候, 为了扩展负载,更好的做法是轮询集群中所有的节点。
3.7.写数据:

在这里插入图片描述

在客户端收到成功响应时,文档变更已经在主分片和所有副本分片执行完成,变更是安全的。

有一些可选的请求参数允许您影响这个过程,可能以数据安全为代价提升性能。这些选项很少使用,因为 Elasticsearch 已经很快,但是为了完整起见,请参考下面表格:

在这里插入图片描述

在这里插入图片描述

3.8.读数据:

在这里插入图片描述

注意,这里是轮询全部副本节点。
3.9.更新:

在这里插入图片描述

3.10.多文档操作流程

mget 和 bulk API 的模式类似于单文档模式。区别在于协调节点知道每个文档存在于哪个分片中。它将整个多文档请求分解成 每个分片 的多文档请求,并且将这些请求并行转发到每个参与节点。

协调节点一旦收到来自每个节点的应答,就将每个节点的响应收集整理成单个响应,返回给客户端

用单个 mget 请求取回多个文档所需的步骤顺序:

  1. 客户端向 Node 1 发送 mget 请求。

  2. Node 1 为每个分片构建多文档获取请求,然后并行转发这些请求到托管在每个所需的主分片或者副本分片的节点上。一旦收到所有答复, Node 1 构建响应并将其返回给客户端。

可以对 docs 数组中每个文档设置 routing 参数。

bulk API 按如下步骤顺序执行:
  1. 客户端向 Node 1 发送 bulk 请求。

  2. Node 1 为每个节点创建一个批量请求,并将这些请求并行转发到每个包含主分片的节点主机。

  3. 主分片一个接一个按顺序执行每个操作。当每个操作成功时,主分片并行转发新文档(或删除)到副本分片,然后执行下一个操作。 一旦所有的副本分片报告所有操作成功。该节点将向协调节点报告成功,协调节点将这些响应收集整理并返回给客户端。

4.分片原理:

分片是 Elasticsearch 最小的工作单元。但是究竟什么是一个分片,它是如何工作的?

传统的数据库每个字段存储单个值,但这对全文检索并不够。文本字段中的每个单词需要被搜索,对数据库意味着需要单个字段有索引多值的能力。最好的支持是一个字段多个值需求的数据结构是倒排索引

4.1.倒排索引:

所谓的正向索引,就是搜索引擎会将待搜索的文件都对应一个文件 ID,搜索时将这个ID 和搜索关键字进行对应,形成 K-V 对,然后对关键字进行统计计数:

在这里插入图片描述

也就是把key,value反过来了,所以叫倒排索引。
例如,假设我们有两个文档,每个文档的 content 域包含如下内容:
  • Quick brown foxes leap over lazy dogs in summer
  • The quick brown fox jumped over the lazy dog

为了创建倒排索引,我们首先将每个文档的 content 域拆分成单独的 词(我们称它为 词条或 tokens ),创建一个包含所有不重复词条的排序列表,然后列出每个词条出现在哪个文档。结果如下所示:

在这里插入图片描述

现在,如果我们想搜索 quick brown ,我们只需要查找包含每个词条的文档:

在这里插入图片描述

​ 使用前面的索引搜索 +Quick +fox 不会得到任何匹配文档。(记住,+ 前缀表明这个词必须存在。)只有同时出现 Quick 和 fox 的文档才满足这个查询条件,但是第一个文档包含quick fox ,第二个文档包含 Quick foxes 。

我们的用户可以合理的期望两个文档与查询匹配。我们可以做的更好。

如果我们将词条规范为标准模式,那么我们可以找到与用户搜索的词条不完全一致,但具有足够相关性的文档。例如:Quick 可以小写化为 quick 。foxes 可以 词干提取 --变为词根的格式-- 为 fox 。类似的, dogs 可以为提取为 dog 。jumped 和 leap 是同义词,可以索引为相同的单词 jump 。

现在索引看上去像这样:

在这里插入图片描述

这还远远不够。我们搜索 +Quick +fox 仍然 会失败,因为在我们的索引中,已经没有 Quick 了。但是,如果我们对搜索的字符串使用与 content 域相同的标准化规则,会变成查询+quick +fox,这样两个文档都会匹配!分词和标准化的过程称为分析

4.2.文档搜索:

在这里插入图片描述

4.3 动态更新索引
如何在保留不变性的前提下实现倒排索引的更新?

答案是: 用更多的索引。通过增加新的补充索引来反映新近的修改,而不是直接重写整个倒排索引。每一个倒排索引都会被轮流查询到,从最早的开始查询完后再对结果进行合并。

Elasticsearch 基于 Lucene, 这个 java 库引入了按段搜索的概念。 每一 段 本身都是一个倒排索引, 但索引在 Lucene 中除表示所有段的集合外, 还增加了提交点的概念 — 一个列出了所有已知段的文件。提交点(commit point)是指在一段时间内对索引所做的所有更改的一个快照。这个快照列出了当前已知的所有段(segment),并指示哪些段是活动的(包含最新的数据)。提交点使得 Elasticsearch 在崩溃或意外停止时能够恢复数据,因为它标记了索引数据的一致状态。

当需要更新倒排索引时,Elasticsearch 采用的策略是写入新的段而不是修改已有的段。具体过程如下:

  1. 新文档的添加
    • 新文档被添加时,Elasticsearch 会将这些文档暂时保存在内存中,并定期将它们刷新到磁盘上,形成一个新的段。这些段是不可变的。
  2. 查询处理
    • 当执行搜索时,Elasticsearch 会在所有段上进行搜索,包括最近添加的段和旧的段。搜索结果会从所有段中提取并合并,生成最终的结果集。
  3. 段合并
    • 随着时间的推移,小的段会逐渐合并为更大的段。这种合并操作会在后台进行,并且是不可见的。合并后的段仍然是不可变的,旧的段在合并后会被标记为可删除。
  4. 删除与更新
    • 当一个文档被删除时,Elasticsearch 不会立即从段中移除该文档,而是标记为已删除。当搜索时,已删除的文档不会被返回。更新也是通过添加新文档并标记旧文档为删除来实现的。
举例:

假设你有一个 Elasticsearch 索引,用来存储博客文章。每篇文章包含标题、内容和作者信息。最初索引中有三个文档,索引在磁盘上形成了一个名为 segment_1 的段。现在,如果我们想添加、更新或删除一些文档,下面是操作如何执行的例子。

初始状态
  • 段(Segment): segment_1
  • 内容:
    • 文档1:{ “title”: “First Post”, “content”: “Hello World”, “author”: “John” }
    • 文档2:{ “title”: “Second Post”, “content”: “Elasticsearch Basics”, “author”: “Alice” }
    • 文档3:{ “title”: “Third Post”, “content”: “Advanced Elasticsearch”, “author”: “Bob” }
添加新文档

你决定添加一篇新文章。

  • 操作:

    • 文档4:{ “title”: “Fourth Post”, “content”: “Lucene Segments”, “author”: “David” }
  • 结果:

    • Elasticsearch 创建了一个新的段 segment_2,并将新文档写入该段中。segment_1 不会被修改
    • 当前状态:
      • segment_1:包含文档1、2、3
      • segment_2:包含文档4
更新文档

你想更新文档2的内容。

  • 操作:

    • 更新文档2的内容为 "content": "Updated Elasticsearch Basics"
  • 结果:

    • Elasticsearch 会将更新后的文档写入一个新的段 segment_3 中,并标记 segment_1 中的旧文档2为删除。
    • 当前状态:
      • segment_1:包含文档1、文档3(文档2标记为删除)
      • segment_2:包含文档4
      • segment_3:包含更新后的文档2
删除文档

你决定删除文档1。

  • 操作:

    • 删除文档1。
  • 结果:

    • Elasticsearch 会在新的段 segment_4 中标记文档1为删除。
    • 当前状态:
      • segment_1:包含文档3(文档1和旧文档2标记为删除)
      • segment_2:包含文档4
      • segment_3:包含更新后的文档2
      • segment_4:标记文档1为删除
段合并

随着时间的推移,Elasticsearch 可能会自动进行段合并。假设 segment_1segment_3 被合并为一个新的段 segment_5

  • 结果:
    • segment_5 将只包含有效的文档,即文档3和更新后的文档2。
    • 当前状态:
      • segment_2:包含文档4
      • segment_4:标记文档1为删除
      • segment_5:包含文档3和更新后的文档2
    • segment_1segment_3 被删除
查询

当用户查询时,Elasticsearch 会在所有活跃段上进行查询,并合并结果。

总结

每次添加、更新或删除文档时,Elasticsearch 不会直接修改原始段,而是创建一个新的段以保存新的状态。随着时间推移,段会被合并和清理,确保系统性能和资源的高效使用。

**4.4 **近实时搜索

随着按段(per-segment)搜索技术的发展,文档从索引到可被搜索的延迟显著降低,新文档可以在几分钟内被检索。但这仍然不够快,磁盘成为了瓶颈。提交(committing)新的段到磁盘时,需要进行 fsync 操作,以确保数据在断电时不会丢失。然而,fsync 的性能开销很大;如果每次索引一个文档就执行一次 fsync,便会导致显著的性能问题。

为了解决这个问题,我们需要一种更轻量级的方式,使文档能够被快速地搜索,而无需每次都进行 fsync。此时,文件系统缓存发挥了重要作用。在 Elasticsearch 和磁盘之间存在这个缓存机制。具体地说,在内存索引缓冲区中的文档被写入到一个新的段中,但这个新段首先会被写入到文件系统缓存中,这一步的成本较低;而后,它再被刷新到磁盘,这一步的成本较高。然而,只要数据已经在缓存中,就可以像访问其他文件一样被打开和读取。

这样的设计允许系统在保证数据安全性的同时,通过文件系统缓存来提高文档的检索速度,从而实现较低延迟的搜索体验。

在这里插入图片描述

{
 "settings": {
 "refresh_interval": "30s" 
 }
}

refresh_interval 可以在既存索引上进行动态更新。 在生产环境中,当你正在建立一个大的新索引时,可以先关闭自动刷新,待开始使用该索引时,再把它们调回来:

# 关闭自动刷新
PUT /users/_settings
{ "refresh_interval": -1 } 
# 每一秒刷新
PUT /users/_settings
{ "refresh_interval": "1s" }
4.5.持久化变更

为了保证 Elasticsearch 的可靠性,需要确保数据变化被持久化到磁盘。在 动态更新索引,我们说一次完整的提交会将段刷到磁盘,并写入一个包含所有段列表的提交点。Elasticsearch 在启动或重新打开一个索引的过程中使用这个提交点来判断哪些段隶属于当前分片。

即使通过每秒刷新(refresh)实现了近实时搜索,我们仍然需要经常进行完整提交来确保能从失败中恢复。但在两次提交之间发生变化的文档怎么办?我们也不希望丢失掉这些数据。Elasticsearch 增加了一个 translog ,或者叫事务日志,在每一次对 Elasticsearch 进行操作时均进行了日志记录

整个流程如下:

  1. 一个文档被索引之后,就会被添加到内存缓冲区,并且追加到了 translog

  2. 刷新(refresh)使分片每秒被刷新(refresh)一次:

  • 这些在内存缓冲区的文档被写入到一个新的段中,且没有进行 fsync 操作。
  • 这个段被打开,使其可被搜索
  • 内存缓冲区被清空
  1. 这个进程继续工作,更多的文档被添加到内存缓冲区和追加到事务日志

  2. 每隔一段时间—例如 translog 变得越来越大—索引被刷新(flush);一个新的 translog 被创建,并且一个全量提交被执行

  • 所有在内存缓冲区的文档都被写入一个新的段。
  • 缓冲区被清空。
  • 一个提交点被写入硬盘。
  • 文件系统缓存通过 fsync 被刷新(flush)。
  • 老的 translog 被删除。

translog 提供所有还没有被刷到磁盘的操作的一个持久化纪录。当 Elasticsearch 启动的时候, 它会从磁盘中使用最后一个提交点去恢复已知的段,并且会重放 translog 中所有在最后一次提交后发生的变更操作。

translog 也被用来提供实时 CRUD 。当你试着通过 ID 查询、更新、删除一个文档,它会在尝试从相应的段中检索之前, 首先检查 translog 任何最近的变更。这意味着它总是能够实时地获取到文档的最新版本。

执行一个提交并且截断 translog 的行为在 Elasticsearch 被称作一次 ,flush分片每 30 分钟被自动刷新(flush),或者在 translog 太大的时候也会刷新

在这里插入图片描述

在这里插入图片描述

4.6.文档分析

  • 将一块文本分成适合于倒排索引的独立的 词条
  • 将这些词条统一化为标准格式以提高它们的“可搜索性”,或者 recall
分析器执行上面的工作。分析器实际上是将三个功能封装到了一个包里:
字符过滤器:

首先,字符串按顺序通过每个字符过滤器 。他们的任务是在分词前整理字符串。一个字符过滤器可以用来去掉 HTML,或者将 & 转化成 and。

分词器:

其次,字符串被 分词器 分为单个的词条。一个简单的分词器遇到空格和标点的时候,可能会将文本拆分成词条。

Token 过滤器:

最后,词条按顺序通过每个 token 过滤器 。这个过程可能会改变词条(例如,小写化Quick ),删除词条(例如, 像 a, and, the 等无用词),或者增加词条(例如,像 jump 和 leap 这种同义词)。

4.6.1.内置分析器:

Elasticsearch 还附带了可以直接使用的预包装的分析器。接下来我们会列出最重要的分析器。为了证明它们的差异,我们看看每个分析器会从下面的字符串得到哪些词条:

“Set the shape to semi-transparent by calling set_trans(5)”
标准分析器:

标准分析器是 Elasticsearch 默认使用的分析器。它是分析各种语言文本最常用的选择。它根据 Unicode 联盟 定义的 单词边界 划分文本。删除绝大部分标点。最后,将词条小写。它会产生:

set, the, shape, to, semi, transparent, by, calling, set_trans, 5
简单分析器:

简单分析器在任何不是字母的地方分隔文本,将词条小写。它会产生:

set, the, shape, to, semi, transparent, by, calling, set, trans
空格分析器:
Set, the, shape, to, semi-transparent, by, calling, set_trans(5)
语言分析器:

特定语言分析器可用于 很多语言。它们可以考虑指定语言的特点。例如, 英语 分析器附带了一组英语无用词(常用单词,例如 and 或者 the ,它们对相关性没有多少影响),它们会被删除。 由于理解英语语法的规则,这个分词器可以提取英语单词的 词干 。

英语 分词器会产生下面的词条:

set, shape, semi, transpar, call, set_tran, 5
注意看 transparent、 calling 和 set_trans 已经变为词根格式。
4.6.2.自定义分析器:
一个 分析器 就是在一个包里面组合了三种函数的一个包装器, 三种函数按照顺序被执行:
字符过滤器

字符过滤器 用来 整理 一个尚未被分词的字符串。例如,如果我们的文本是 HTML 格式的,它会包含像

或者

这样的 HTML 标签,这些标签是我们不想索引的。我们可以使用 html 清除 字符过滤器 来移除掉所有的 HTML 标签,并且像把 &Aacute转换为相对应的 Unicode 字符 Á 这样,转换 HTML 实体。一个分析器可能有 0 个或者多个字符过滤器。

分词器

一个分析器必须有一个唯一的分词器。 分词器把字符串分解成单个词条或者词汇单元。 标准分析器里使用的标准分词器 把一个字符串根据单词边界分解成单个词条,并且移除掉大部分的标点符号,然而还有其他不同行为的分词器存在。

例如, 关键词分词器完整地输出接收到的同样的字符串,并不做任何分词。 空格分词器根据空格分割文本 。 正则 分词器 根据匹配正则表达式来分割文本。

词单元过滤器

经过分词,作为结果的 词单元流 会按照指定的顺序通过指定的词单元过滤器 。

词单元过滤器可以修改、添加或者移除词单元。我们已经提到过 lowercase 和 stop 词过滤器 ,但是在 Elasticsearch 里面还有很多可供选择的词单元过滤器。词干过滤器 把单词 遏制 为 词干。 ascii_folding 过滤器移除变音符,把一个像 “très” 这样的词转换为 “tres”

ngram 和 edge_ngram 词单元过滤器 可以产生 适合用于部分匹配或者自动补全的词单元。

接下来,我们看看如何创建自定义的分析器:

# PUT http://localhost:9200/my_index
{
 "settings": {
 "analysis": {
 "char_filter": {
 "&_to_and": {
 "type": "mapping",
 "mappings": [ "&=> and "]
 }},
 "filter": {
 "my_stopwords": {
 "type": "stop",
 "stopwords": [ "the", "a" ]
 }},
 "analyzer": {
 "my_analyzer": {
 "type": "custom",
 "char_filter": [ "html_strip", "&_to_and" ],
 "tokenizer": "standard",
 "filter": [ "lowercase", "my_stopwords" ]
 }}
}}}
analysis
  • analysis 部分包含了自定义的分析配置。它包括以下子项:

    • char_filter

      • 定义了字符过滤器,它在分词前对输入的文本进行处理。
      • &_to_and 是一个自定义字符过滤器,用于将字符 & 替换为单词 and
    • filter

      • 定义了分词器的过滤器,用于在分词过程中处理词汇。
      • my_stopwords 是一个自定义的停止词过滤器,用于过滤掉常见的、不重要的词汇。在这个配置中,"the""a" 被定义为停止词。
    • analyzer

      • my_analyzer
        

        是一个自定义分析器,包含以下配置:

        • type: custom 表示这是一个自定义分析器。
        • char_filter: 包含 html_strip&_to_andhtml_strip 用于移除 HTML 标签,而 &_to_and 处理字符替换。
        • tokenizer: standard 表示使用标准分词器进行分词。
        • filter: 包含 lowercasemy_stopwordslowercase 过滤器将所有词汇转换为小写,my_stopwords 过滤器移除指定的停止词。
测试:
# GET http://127.0.0.1:9200/my_index/_analyze
{
 "text":"The quick & brown fox",
 "analyzer": "my_analyzer"
}

下面的缩略结果展示出我们的分析器正在正确地运行

{
 "tokens": [
 {
 "token": "quick",
 "start_offset": 4,
 "end_offset": 9,
 "type": "<ALPHANUM>",
 "position": 1
 },
 {
 "token": "and",
 "start_offset": 10,
 "end_offset": 11,
 "type": "<ALPHANUM>",
 "position": 2
 },
 {
 "token": "brown",
 "start_offset": 12,
 "end_offset": 17,
 "type": "<ALPHANUM>",
 "position": 3
 },
 {
 "token": "fox",
 "start_offset": 18,
 "end_offset": 21,
 "type": "<ALPHANUM>",
 "position": 4
 }
 ]
}
4.6.2.文档控制:

如果是全量修改,那还好,如果不是,两个人同时改了相同的部分文档,就会出问题。

所以要加锁。
悲观并发控制

这种方法被关系型数据库广泛使用,它假定有变更冲突可能发生,因此阻塞访问资源以防止冲突。 一个典型的例子是读取一行数据之前先将其锁住,确保只有放置锁的线程能够对这行数据进行修改。

乐观并发控制

Elasticsearch 中使用的这种方法假定冲突是不可能发生的,并且不会阻塞正在尝试的操作。 然而,如果源数据在读写当中被修改,更新将会失败。应用程序接下来将决定该如何解决冲突。 例如,可以重试更新、使用新的数据、或者将相关情况报告给用户。

在早期中,我们可以在请求路径加上version=1,但是现在已经过时,会报错。现在可以使用if_seq_no和if_primary_term代替。

在这里插入图片描述

我们在新版本也可以基于version使用外部文档控制:

在这里插入图片描述

后面加上路径参数即可。

5.SpringData:

Spring Data 是一个用于简化数据库、非关系型数据库、索引库访问,并支持云服务的开源框架。其主要目标是使得对数据的访问变得方便快捷,并支持 map-reduce 框架和云计算数据服务。 Spring Data 可以极大的简化 JPA(Elasticsearch„)的写法,可以在几乎不用

写实现的情况下,实现对数据的访问和操作。除了 CRUD 外,还包括如分页、排序等一些常用的功能

Spring Data 常用的功能模块如下:

在这里插入图片描述

  • ElasticsearchRestTemplate 是 spring-data-elasticsearch 项目中的一个类,和其他 spring 项目中的 template
  • 类似。在新版的 spring-data-elasticsearch 中,ElasticsearchRestTemplate 代替了原来的 ElasticsearchTemplate。
  • 原因是 ElasticsearchTemplate 基于 TransportClient,TransportClient 即将在 8.x 以后的版本中移除。所以,我们推荐使用 ElasticsearchRestTemplate。
  • ElasticsearchRestTemplate 基 于 RestHighLevelClient 客户端的。需要自定义配置类,继承AbstractElasticsearchConfiguration,并实现 elasticsearchClient()抽象方法,创建 RestHighLevelClient 对象
@ConfigurationProperties(prefix = "elasticsearch")
@Configuration
@Data
public class ElasticsearchConfig extends AbstractElasticsearchConfiguration {
 private String host ;
 private Integer port ;
 //重写父类方法
 @Override
 public RestHighLevelClient elasticsearchClient() {
 RestClientBuilder builder = RestClient.builder(new HttpHost(host, port));
 RestHighLevelClient restHighLevelClient = new 
RestHighLevelClient(builder);
 return restHighLevelClient;
 }
}
实体类如下:
@Data
@NoArgsConstructor
@AllArgsConstructor
@ToString
@Document(indexName = "shopping", shards = 3, replicas = 1)
public class Product {
 //必须有 id,这里的 id 是全局唯一的标识,等同于 es 中的"_id"
 @Id
 private Long id;//商品唯一标识
 /**
 * type : 字段数据类型
 * analyzer : 分词器类型
 * index : 是否索引(默认:true)
 * Keyword : 短语,不进行分词
 */
 @Field(type = FieldType.Text, analyzer = "ik_max_word")
 private String title;//商品名称
 @Field(type = FieldType.Keyword)
 private String category;//分类名称
 @Field(type = FieldType.Double)
 private Double price;//商品价格
 @Field(type = FieldType.Keyword, index = false)
 private String images;//图片地址
}

当使用 Spring Data Elasticsearch 并且在实体类上配置了 @Document 注解时,如果指定的索引(在这个例子中是 shopping 索引)在 Elasticsearch 中不存在,默认情况下会在程序启动时自动创建该索引。

索引操作:
@RunWith(SpringRunner.class)
@SpringBootTest
public class SpringDataESIndexTest {
 //注入 ElasticsearchRestTemplate
 @Autowired
 private ElasticsearchRestTemplate elasticsearchRestTemplate;
 //创建索引并增加映射配置
 @Test
 public void createIndex(){
 //创建索引,系统初始化会自动创建索引
 System.out.println("创建索引");
 }
 @Test
 public void deleteIndex(){
 //创建索引,系统初始化会自动创建索引
 boolean flg = elasticsearchRestTemplate.deleteIndex(Product.class);
 System.out.println("删除索引 = " + flg);
 }
}
文档操作:
@RunWith(SpringRunner.class)
@SpringBootTest
public class SpringDataESProductDaoTest {
 @Autowired
 private ProductDao productDao;
 /**
 * 新增
 */
 @Test
 public void save(){
 Product product = new Product();
 product.setId(2L);
 product.setTitle("华为手机");
 product.setCategory("手机");
 product.setPrice(2999.0);
 product.setImages("http://www.atguigu/hw.jpg");
 productDao.save(product);
 }
 //修改
 @Test
 public void update(){
 Product product = new Product();
 product.setId(1L);
 product.setTitle("小米 2 手机");
 product.setCategory("手机");
 product.setPrice(9999.0);
 product.setImages("http://www.atguigu/xm.jpg");
 productDao.save(product);
 }
 //根据 id 查询
 @Test
 public void findById(){
 Product product = productDao.findById(1L).get();
 System.out.println(product);
 }
 //查询所有
 @Test
 public void findAll(){
 Iterable<Product> products = productDao.findAll();
 for (Product product : products) {
 System.out.println(product);
 }
 }
 //删除
 @Test
 public void delete(){
 Product product = new Product();
 product.setId(1L);
 productDao.delete(product);
 }
 //批量新增
 @Test
 public void saveAll(){
 List<Product> productList = new ArrayList<>();
 for (int i = 0; i < 10; i++) {
 Product product = new Product();
 product.setId(Long.valueOf(i));
 product.setTitle("["+i+"]小米手机");
 product.setCategory("手机");
 product.setPrice(1999.0+i);
 product.setImages("http://www.atguigu/xm.jpg");
 productList.add(product);
 }
 productDao.saveAll(productList);
 }
 //分页查询
 @Test
 public void findByPageable(){
 //设置排序(排序方式,正序还是倒序,排序的 id)
 Sort sort = Sort.by(Sort.Direction.DESC,"id");
 int currentPage=0;//当前页,第一页从 0 开始,1 表示第二页
 int pageSize = 5;//每页显示多少条
 //设置查询分页
 PageRequest pageRequest = PageRequest.of(currentPage, pageSize,sort);
 //分页查询
 Page<Product> productPage = productDao.findAll(pageRequest);
 for (Product Product : productPage.getContent()) {
 System.out.println(Product);
 }
 }
}
文档搜索:
public class SpringDataESSearchTest {
 @Autowired
 private ProductDao productDao;
 /**
 * term 查询
 * search(termQueryBuilder) 调用搜索方法,参数查询构建器对象
 */
 @Test
 public void termQuery(){
 TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery("title", "小米");
 Iterable<Product> products = productDao.search(termQueryBuilder);
 for (Product product : products) {
 System.out.println(product);
 }
 }
 /**
 * term 查询加分页
 */
 @Test
 public void termQueryByPage(){
 int currentPage= 0 ;
 int pageSize = 5;
 //设置查询分页
 PageRequest pageRequest = PageRequest.of(currentPage, pageSize);
 TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery("title", "小米");
 Iterable<Product> products = 
productDao.search(termQueryBuilder,pageRequest);
 for (Product product : products) {
 System.out.println(product);
 }
 }
}

6.es8x:

6.1.索引模板:
创建:
# 模板名称小写
PUT _template/mytemplate
{
 "index_patterns" : [
 "my*"
 ],
 "settings" : {
 "index" : {
 "number_of_shards" : "1"
 }
 },
 "mappings" : {
 "properties" : {
 "now": {
 "type" : "date",
 "format" : "yyyy/MM/dd"
 }
 }
 }
}
 "index_patterns" : [
    "my*"
 ],
以上为模板应用规则,它会自动匹配运用。
查看:
GET /_template/mytemplate
验证是否存在:
HEAD /_template/mytemplate
删除:
DELETE /_template/mytemplate
6.2.匹配分数:
# 增加分析参数
GET /atguigu/_search?explain=true
{
 "query": {
 "match": {
 "text": "hello"
 }
 }
}

在这里插入图片描述

计算 TF 值:

在这里插入图片描述

计算 IDF 值:

在这里插入图片描述

计算文档得分:

在这里插入图片描述

我们可以在查询时设置权重:
# 查询文档标题中含有“Hadoop,Elasticsearch,Spark”的内容
GET /testscore/_search?explain=true
{
 "query": {
  "bool": {
 "should": [
 {
 "match": {
 "title": {"query": "Hadoop", "boost": 1}
 }
 },
 {
 "match": {
 "title": {"query": "Hive", "boost": 1}
 }
 },
 {
 "match": {
 "title": {"query": "Spark", "boost": 1}
 }
 }
 ]
 }
 }
}

待续…


网站公告

今日签到

点亮在社区的每一天
去签到