【PhysUnits】15.9 引入P1后的右移运算(shr.rs)

发布于:2025-06-03 ⋅ 阅读:(16) ⋅ 点赞:(0)

一、源码

这段代码是用Rust实现的类型级右移运算(>>),属于类型级编程的范畴。它通过类型系统来表示和操作二进制数,并在编译期完成计算。

use super::basic::{Z0, P1, N1, B0, B1, NonZero, NonOne, Unsigned};
use super::sub1::Sub1;
use core::ops::Shr;

// ==================== Right Shift Operation (>>) ====================
// ==================== 右移运算(>>) ====================

// Z0 >> U
// Zero right shifted by any unsigned number is still zero
// 零右移任何无符号数仍然是零
impl<R: Unsigned> Shr<R> for Z0 {
    type Output = Z0;
    fn shr(self, _: R) -> Self::Output {
        Z0  // 0 >> n = 0
    }
}

// P1 >> U
// Positive one right shifted by zero is itself
// 正一右移零位是其本身
impl Shr<Z0> for P1 {
    type Output = Self;
    fn shr(self, _: Z0) -> Self::Output {
        self
    }
}

// Positive one right shifted by any non-zero unsigned number becomes zero
// 正一右移任何非零无符号数变为零
impl<R: Unsigned + NonZero> Shr<R> for P1 {
    type Output = Z0;
    fn shr(self, _: R) -> Self::Output {
        Z0::new()
    }
}

// N1 >> U
// Negative one right shifted by any unsigned number remains negative one
// (due to sign extension in two's complement)
// 负一右移任何无符号数仍然是负一(由于二进制补码中的符号扩展)
impl<R: Unsigned> Shr<R> for N1 {
    type Output = Self;
    fn shr(self, _: R) -> Self::Output {
        self
    }
}

// B0 >> U
// Binary number ending with 0 right shifted by zero is itself
// 以0结尾的二进制数右移零位是其本身
impl<H: NonZero> Shr<Z0> for B0<H> {
    type Output = Self;
    fn shr(self, _: Z0) -> Self::Output {
        self
    }
}

// Binary number ending with 0 right shifted by one becomes its head
// 以0结尾的二进制数右移一位变为其头部
impl<H: NonZero> Shr<P1> for B0<H> {
    type Output = H;
    fn shr(self, _: P1) -> Self::Output {
        H::default()
    }
}

// Binary number ending with 0 right shifted by more than one
// Recursively shifts right by one until the shift amount is zero
// 以0结尾的二进制数右移多于一位
// 递归地右移一位直到移位量为零
impl<H: NonZero, R: Unsigned + NonZero + NonOne + Sub1> Shr<R> for B0<H>
where
    H: Shr<<R as Sub1>::Output>
{
    type Output = <H as Shr<R::Output>>::Output;
    fn shr(self, r: R) -> Self::Output {
        (self>>P1)>>r.sub1()
    }
}

// B1 >> U
// Binary number ending with 1 right shifted by zero is itself
// 以1结尾的二进制数右移零位是其本身
impl<H: NonZero> Shr<Z0> for B1<H> {
    type Output = Self;
    fn shr(self, _: Z0) -> Self::Output {
        self
    }
}

// Binary number ending with 1 right shifted by one becomes its head
// 以1结尾的二进制数右移一位变为其头部
impl<H: NonZero> Shr<P1> for B1<H> {
    type Output = H;
    fn shr(self, _: P1) -> Self::Output {
        H::default()
    }
}

// Binary number ending with 1 right shifted by more than one
// Recursively shifts right by one until the shift amount is zero,
// and maintains the sign bit (B0 prefix)
// 以1结尾的二进制数右移多于一位
// 递归地右移一位直到移位量为零,并保持符号位(B0前缀)
impl<H: NonZero, R: Unsigned + NonZero + NonOne + Sub1> Shr<R> for B1<H>
where
    H: Shr<<R as Sub1>::Output>
{
    type Output = <H as Shr<R::Output>>::Output;
    fn shr(self, r: R) -> Self::Output {
        (self>>P1)>>(r.sub1())
    }
}

// Test cases
#[cfg(test)]
mod tests {
    use super::*;
    
    #[test]
    fn test_shr() {
        // Test Z0
        let _: Z0 = Z0 >> Z0;
        let _: Z0 = Z0 >> P1;
        
        // Test P1
        let _: P1 = P1 >> Z0;
        let _: Z0 = P1 >> P1;
        
        // Test N1
        let _: N1 = N1 >> Z0;
        let _: N1 = N1 >> P1;
        
        // Test B0
        let b0: B0<P1> = B0::new();
        let _: B0<P1> = b0 >> Z0;
        let _: P1 = b0 >> P1;
        
        // Test B1
        let b1: B1<P1> = B1::new();
        let _: B1<P1> = b1 >> Z0;
        let _: P1 = b1 >> P1;
    }
}

二、基本概念

  1. 类型定义:
  • Z0:表示数字0

  • P1:表示+1

  • N1:表示-1

  • B0:表示以0结尾的二进制数(如B0表示二进制10,即十进制2)

  • B1:表示以1结尾的二进制数(如B1表示二进制11,即十进制3)

  • NonZero、NonOne、Unsigned:这些是标记trait,用于约束类型参数

  1. 核心trait:
  • Shr:Rust的右移运算符trait,这里为不同类型实现了该trait

三、实现逻辑

  1. Z0(零)的右移:
  • 任何数右移0位保持不变

  • 0右移任何位数仍然是0

  1. P1(+1)的右移:
  • 右移0位:保持不变

  • 右移非零位:变为0(因为正数的右移会补0)

  1. N1(-1)的右移:
  • 右移任何位数都保持不变(因为负数的右移在补码表示中会进行符号扩展)
  1. B0(以0结尾的二进制数)的右移:
  • 右移0位:保持不变

  • 右移1位:去掉最后一位0,变成头部H

  • 右移多位:递归地右移1位直到完成

  1. B1(以1结尾的二进制数)的右移:
  • 类似B0,但会保持符号位
递归实现

对于多位右移操作,代码使用了递归的方式:

impl<H: NonZero, R: Unsigned + NonZero + NonOne + Sub1> Shr<R> for B0<H>
where
    H: Shr<<R as Sub1>::Output>
{
    type Output = <H as Shr<R::Output>>::Output;
    fn shr(self, r: R) -> Self::Output {
        (self>>P1)>>r.sub1()
    }
}

这里的意思是:要计算B0 >> R,先右移1位变成H,然后对剩下的R-1位继续右移。

测试用例

测试了各种情况:

  • 零的右移

  • +1的右移

  • -1的右移

  • 以0结尾的二进制数的右移

  • 以1结尾的二进制数的右移

四、总结

这段代码展示了如何利用Rust的类型系统在编译期完成右移运算。通过为不同类型实现Shr trait,并使用递归类型计算,实现了类型安全的右移操作。这种技术常用于嵌入式开发等需要编译期计算的场景。


网站公告

今日签到

点亮在社区的每一天
去签到