day 46

发布于:2025-06-07 ⋅ 阅读:(17) ⋅ 点赞:(0)

注意力

 

注意力机制是一种让模型学会「选择性关注重要信息」的特征提取器,就像人类视觉会自动忽略背景,聚焦于图片中的主体(如猫、汽车)。

transformer中的叫做自注意力机制,他是一种自己学习自己的机制,他可以自动学习到图片中的主体,并忽略背景。我们现在说的很多模块,比如通道注意力、空间注意力、通道注意力等等,都是基于自注意力机制的。

通道注意力

想要把通道注意力插入到模型中,关键步骤如下:

1. 定义注意力模块

# ===================== 新增:通道注意力模块(SE模块) =====================
class ChannelAttention(nn.Module):
    """通道注意力模块(Squeeze-and-Excitation)"""
    def __init__(self, in_channels, reduction_ratio=16):
        """
        参数:
            in_channels: 输入特征图的通道数
            reduction_ratio: 降维比例,用于减少参数量
        """
        super(ChannelAttention, self).__init__()
        
        # 全局平均池化 - 将空间维度压缩为1x1,保留通道信息
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        
        # 全连接层 + 激活函数,用于学习通道间的依赖关系
        self.fc = nn.Sequential(
            # 降维:压缩通道数,减少计算量
            nn.Linear(in_channels, in_channels // reduction_ratio, bias=False),
            nn.ReLU(inplace=True),
            # 升维:恢复原始通道数
            nn.Linear(in_channels // reduction_ratio, in_channels, bias=False),
            # Sigmoid将输出值归一化到[0,1],表示通道重要性权重
            nn.Sigmoid()
        )

    def forward(self, x):
        """
        参数:
            x: 输入特征图,形状为 [batch_size, channels, height, width]
        
        返回:
            加权后的特征图,形状不变
        """
        batch_size, channels, height, width = x.size()
        
        # 1. 全局平均池化:[batch_size, channels, height, width] → [batch_size, channels, 1, 1]
        avg_pool_output = self.avg_pool(x)
        
        # 2. 展平为一维向量:[batch_size, channels, 1, 1] → [batch_size, channels]
        avg_pool_output = avg_pool_output.view(batch_size, channels)
        
        # 3. 通过全连接层学习通道权重:[batch_size, channels] → [batch_size, channels]
        channel_weights = self.fc(avg_pool_output)
        
        # 4. 重塑为二维张量:[batch_size, channels] → [batch_size, channels, 1, 1]
        channel_weights = channel_weights.view(batch_size, channels, 1, 1)
        
        # 5. 将权重应用到原始特征图上(逐通道相乘)
        return x * channel_weights  # 输出形状:[batch_size, channels, height, width]

2. 重写之前的模型定义部分,确定好模块插入的位置

class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()  
        
        # ---------------------- 第一个卷积块 ----------------------
        self.conv1 = nn.Conv2d(3, 32, 3, padding=1)
        self.bn1 = nn.BatchNorm2d(32)
        self.relu1 = nn.ReLU()
        # 新增:插入通道注意力模块(SE模块)
        self.ca1 = ChannelAttention(in_channels=32, reduction_ratio=16)  
        self.pool1 = nn.MaxPool2d(2, 2)  
        
        # ---------------------- 第二个卷积块 ----------------------
        self.conv2 = nn.Conv2d(32, 64, 3, padding=1)
        self.bn2 = nn.BatchNorm2d(64)
        self.relu2 = nn.ReLU()
        # 新增:插入通道注意力模块(SE模块)
        self.ca2 = ChannelAttention(in_channels=64, reduction_ratio=16)  
        self.pool2 = nn.MaxPool2d(2)  
        
        # ---------------------- 第三个卷积块 ----------------------
        self.conv3 = nn.Conv2d(64, 128, 3, padding=1)
        self.bn3 = nn.BatchNorm2d(128)
        self.relu3 = nn.ReLU()
        # 新增:插入通道注意力模块(SE模块)
        self.ca3 = ChannelAttention(in_channels=128, reduction_ratio=16)  
        self.pool3 = nn.MaxPool2d(2)  
        
        # ---------------------- 全连接层(分类器) ----------------------
        self.fc1 = nn.Linear(128 * 4 * 4, 512)
        self.dropout = nn.Dropout(p=0.5)
        self.fc2 = nn.Linear(512, 10)

    def forward(self, x):
        # ---------- 卷积块1处理 ----------
        x = self.conv1(x)       
        x = self.bn1(x)         
        x = self.relu1(x)       
        x = self.ca1(x)  # 应用通道注意力
        x = self.pool1(x)       
        
        # ---------- 卷积块2处理 ----------
        x = self.conv2(x)       
        x = self.bn2(x)         
        x = self.relu2(x)       
        x = self.ca2(x)  # 应用通道注意力
        x = self.pool2(x)       
        
        # ---------- 卷积块3处理 ----------
        x = self.conv3(x)       
        x = self.bn3(x)         
        x = self.relu3(x)       
        x = self.ca3(x)  # 应用通道注意力
        x = self.pool3(x)       
        
        # ---------- 展平与全连接层 ----------
        x = x.view(-1, 128 * 4 * 4)  
        x = self.fc1(x)           
        x = self.relu3(x)         
        x = self.dropout(x)       
        x = self.fc2(x)           
        
        return x  

# 重新初始化模型,包含通道注意力模块
model = CNN()
model = model.to(device)  # 将模型移至GPU(如果可用)

criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器

# 引入学习率调度器,在训练过程中动态调整学习率--训练初期使用较大的 LR 快速降低损失,训练后期使用较小的 LR 更精细地逼近全局最优解。
# 在每个 epoch 结束后,需要手动调用调度器来更新学习率,可以在训练过程中调用 scheduler.step()
scheduler = optim.lr_scheduler.ReduceLROnPlateau(
    optimizer,        # 指定要控制的优化器(这里是Adam)
    mode='min',       # 监测的指标是"最小化"(如损失函数)
    patience=3,       # 如果连续3个epoch指标没有改善,才降低LR
    factor=0.5        # 降低LR的比例(新LR = 旧LR × 0.5)
)

简单来说就是通过对输入的特征图进行加权,从而增强重要通道的特征响应,抑制不重要通道的响应。

@浙大疏锦行