求解一次最佳平方逼近多项式

发布于:2025-06-08 ⋅ 阅读:(19) ⋅ 点赞:(0)

f ( x ) = 1 + x 2 f(x)=\sqrt{1+x^2} f(x)=1+x2 ,求 [ 0 , 1 ] [0,1] [0,1]上的一个一次最佳平方逼近多项式。

解 :

d 0 = ∫ 0 1 1 + x 2 d x = 1 2 ln ⁡ ( 1 + 2 ) + 2 2 ≈ 1.147 d_0=\int_{0}^{1}\sqrt{1+x^2}dx=\frac{1}{2}\ln(1+\sqrt{2})+\frac{\sqrt{2}}{2}\approx 1.147 d0=011+x2 dx=21ln(1+2 )+22 1.147

d 1 = ∫ 0 1 x 1 + x 2 d x = 1 3 ( 1 + x 2 ) 3 2 ∣ 0 1 = 2 2 − 1 3 ≈ 0.609 d_1=\int_{0}^{1}x\sqrt{1+x^2}dx=\left.\frac{1}{3}(1+x^2)^{\frac{3}{2}}\right|_{0}^{1}=\frac{2\sqrt{2}-1}{3}\approx 0.609 d1=01x1+x2 dx=31(1+x2)23 01=322 10.609

由方程组
( 1 1 2 1 2 1 3 ) ( a 0 a 1 ) = ( 1.147 0.609 ) , \begin{pmatrix} 1 & \frac{1}{2}\\ \frac{1}{2} & \frac{1}{3} \end{pmatrix}\begin{pmatrix} a_0\\ a_1 \end{pmatrix}=\begin{pmatrix} 1.147\\ 0.609 \end{pmatrix}, (1212131)(a0a1)=(1.1470.609),

解出 a 0 = 0.934 , a 1 = 0.426 , S 1 ∗ ( x ) = 0.934 + 0.426 x a_0=0.934,\quad a_1=0.426,\quad S_1^*(x)=0.934+0.426x a0=0.934,a1=0.426,S1(x)=0.934+0.426x

平方误差 ∥ δ ∥ 2 2 = ( f , f ) − ( S 1 ∗ , f ) = ∫ 0 1 ( 1 + x 2 ) d x − 0.426 d 1 − 0.934 d 0 = 0.0026 \|\delta\|^2_2=(f,f)-(S_1^*,f)=\int_{0}^{1}(1+x^2)dx-0.426d_1-0.934d_0=0.0026 δ22=(f,f)(S1,f)=01(1+x2)dx0.426d10.934d0=0.0026

最大误差 ∥ δ ∥ ∞ = max ⁡ 0 ≤ x ≤ 1 ∣ 1 + x 2 − S 1 ∗ ( x ) ∣ ≈ 0.066 \|\delta\|_\infty=\max_{0\leq x\leq1}|\sqrt{1+x^2}-S_1^*(x)|\approx 0.066 δ=0x1max1+x2 S1(x)0.066


网站公告

今日签到

点亮在社区的每一天
去签到