matlab 各种智能优化算法

发布于:2025-06-13 ⋅ 阅读:(18) ⋅ 点赞:(0)

1. 优化算法相关

蚁群优化算法(ACO)

蚁群优化算法是一种模拟蚂蚁觅食行为的优化技术。以下是一个简化版的ACO用于解决旅行商问题(TSP)的MATLAB代码:

function [bestRoute, minDist] = acoTsp(distMatrix, numAnts, numIterations)
    % 初始化参数
    nCities = size(distMatrix, 1);
    pheromone = ones(nCities) / nCities;
    alpha = 1; beta = 5; rho = 0.5;

    bestRoute = [];
    minDist = inf;

    for iter = 1:numIterations
        routes = cell(numAnts, 1);
        distances = zeros(numAnts, 1);

        for ant = 1:numAnts
            route = randperm(nCities);
            distance = calculateRouteDistance(route, distMatrix);

            % 更新最佳路径
            if distance < minDist
                minDist = distance;
                bestRoute = route;
            end

            routes{ant} = route;
            distances(ant) = distance;
        end

        % 更新信息素
        updatePheromones(routes, distances, pheromone, rho, alpha, beta);
    end
end

function distance = calculateRouteDistance(route, distMatrix)
    nCities = length(route);
    distance = sum(distMatrix(sub2ind(size(distMatrix), route(1:end-1), route(2:end)))) + ...
               distMatrix(route(end), route(1));
end

function pheromone = updatePheromones(routes, distances, pheromone, rho, alpha, beta)
    nCities = size(pheromone, 1);
    deltaPheromone = zeros(nCities);

    for i = 1:length(routes)
        route = routes{i};
        for j = 1:(length(route)-1)
            deltaPheromone(route(j), route(j+1)) = deltaPheromone(route(j), route(j+1)) + 1/distances(i);
        end
    end

    pheromone = (1-rho) * pheromone + deltaPheromone.^alpha .* (1./distances').^beta;
end

2. 控制器相关

ADRC控制

自抗扰控制器(ADRC)通过估计并补偿系统中的总扰动来增强系统的鲁棒性。下面是一个简单的ADRC控制器设计的MATLAB代码框架:

function u = adrc_control(x, x_dot, r, e, e_dot, b0, h)
    % 参数设置
    kp = 10; kd = 5; w_c = 20;

    % 状态观测器设计
    z1 = x;
    z2 = x_dot + e/h;

    % 扰动估计
    f_hat = z2 - x_dot;

    % 控制律
    v = kp*(r-z1) + kd*(0-e)/h;
    u = (v-f_hat)/b0;
end

参考 matlab 各种智能优化算法

3. 神经网络相关

BP神经网络

BP神经网络是一种基于误差反向传播算法训练的多层前馈神经网络。以下是在MATLAB中使用trainNetwork函数训练一个简单的BP神经网络的例子:

% 数据准备
X = rand(10, 100); % 输入数据
Y = rand(5, 100); % 输出目标

% 定义网络架构
layers = [
    featureInputLayer(10)
    fullyConnectedLayer(20)
    reluLayer
    fullyConnectedLayer(5)
    regressionLayer];

% 设置训练选项
options = trainingOptions('adam', ...
    'MaxEpochs', 100, ...
    'MiniBatchSize', 10, ...
    'InitialLearnRate', 0.01);

% 训练网络
net = trainNetwork(X, Y, layers, options);

% 使用训练好的网络进行预测
YPred = predict(net, X);

以上提供的代码片段仅作为入门指导,实际应用中可能需要根据具体情况调整参数和模型结构。希望这些示例能够帮助你更好地理解和实现各种算法。