docker build -t modelscope-video .
DEPRECATED: The legacy builder is deprecated and will be removed in a future release.
Install the buildx component to build images with BuildKit:
https://docs.docker.com/go/buildx/
unable to prepare context: path "." not found
解决方法
1. 确认当前目录和 Dockerfile
- 检查当前目录:
bash
CollapseWrapRun
Copy
确认是否在 ~/work/miniconda(或你保存 Dockerfile 的目录),并检查是否包含 Dockerfile 和 text-to-video.py。pwd ls -la
- 如果缺少 Dockerfile: 创建 Dockerfile:
bash
CollapseWrapRun
Copy
复制以下内容(优化后的 Dockerfile,基于 ubuntu:22.04 解决 GLIBCXX_3.4.29):cd ~/work/miniconda nano Dockerfile
dockerfile
CollapseWrap
Copy
保存并退出。# 使用 Ubuntu 22.04(包含 GLIBCXX_3.4.29) FROM ubuntu:22.04 # 设置非交互式安装 ENV DEBIAN_FRONTEND=noninteractive # 安装基本工具和依赖 RUN apt-get update && apt-get install -y \ python3.8 \ python3-pip \ git \ ffmpeg \ libsm6 \ libxext6 \ libxrender-dev \ libgl1-mesa-glx \ && rm -rf /var/lib/apt/lists/* # 设置 Python 3.8 为默认 RUN update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.8 1 RUN update-alternatives --install /usr/bin/python python /usr/bin/python3.8 1 RUN pip install --no-cache-dir --upgrade pip # 安装 PyTorch(CPU 版本) RUN pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu # 安装 ModelScope 和文生视频依赖 RUN pip install modelscope diffusers transformers opencv-python pillow sentence-transformers -i https://pypi.tuna.tsinghua.edu.cn/simple # 设置工作目录 WORKDIR /app # 复制文生视频脚本 COPY text-to-video.py . # 默认命令 CMD ["python", "text-to-video.py"]
- 如果缺少 text-to-video.py: 创建脚本:
bash
CollapseWrapRun
Copy
复制以下内容(生成多个短视频,适配 >30 秒需求):nano text-to-video.py
python
CollapseWrapRun
Copy
保存并退出。import os from modelscope.pipelines import pipeline from modelscope.outputs import OutputKeys pipeline = pipeline("text-to-video-synthesis", "damo/text-to-video-synthesis", device="cpu") prompts = [ "A cat walking in a garden under sunlight, 0-6 seconds", "A cat walking in a garden under sunlight, 6-12 seconds", "A cat walking in a garden under sunlight, 12-18 seconds", "A cat walking in a garden under sunlight, 18-24 seconds", "A cat walking in a garden under sunlight, 24-30 seconds" ] for i, prompt in enumerate(prompts): output = pipeline(prompt, num_frames=48, fps=8) video_path = output[OutputKeys.OUTPUT_VIDEO_PATH] os.rename(video_path, f"/app/output/video_{i}.mp4") print(f"Video saved to /app/output/video_{i}.mp4")
2. 确认 Docker 存储路径
你提到 ~/work/ 空间较大,之前建议迁移 Docker 存储到 ~/work/docker。验证是否配置成功:
bash
CollapseWrapRun
Copy
docker info --format '{{.DockerRootDir}}'
- 如果输出 /home/powersys/work/docker,说明迁移成功。
- 如果仍为 /var/lib/docker,按以下步骤配置:
bash
CollapseWrapRun
Copy
添加:sudo systemctl stop docker mkdir -p ~/work/docker sudo rsync -av /var/lib/docker/ ~/work/docker/ sudo nano /etc/docker/daemon.json
json
CollapseWrap
Copy
重启 Docker:{ "data-root": "/home/powersys/work/docker" }
bash
CollapseWrapRun
Copysudo systemctl start docker
- 检查磁盘空间:
bash
CollapseWrapRun
Copy
确保 ~/work/ 有 20-30 GB 空闲。如果不足,清理:df -h ~/work
bash
CollapseWrapRun
Copydocker system prune -a --volumes conda clean --all
3. 构建 Docker 镜像
在正确目录(包含 Dockerfile 和 text-to-video.py)运行:
bash
CollapseWrapRun
Copy
cd ~/work/miniconda docker build -t modelscope-video .
- 解决 Buildx 警告(可选): 安装 Buildx:
bash
CollapseWrapRun
Copysudo apt install docker-buildx docker buildx create --use docker buildx build -t modelscope-video .
4. 运行 Docker 容器
创建输出目录:
bash
CollapseWrapRun
Copy
mkdir -p ~/work/miniconda/output
运行容器:
bash
CollapseWrapRun
Copy
docker run --rm -v $(pwd)/output:/app/output modelscope-video
- 脚本将生成 5 个 6 秒视频(video_0.mp4 到 video_4.mp4),保存到 ~/work/miniconda/output。
5. 拼接 >30 秒视频
安装 FFmpeg(如果未安装):
bash
CollapseWrapRun
Copy
sudo apt install ffmpeg
拼接视频:
bash
CollapseWrapRun
Copy
cd ~/work/miniconda/output echo -e "file 'video_0.mp4'\nfile 'video_1.mp4'\nfile 'video_2.mp4'\nfile 'video_3.mp4'\nfile 'video_4.mp4'" > file_list.txt ffmpeg -f concat -i file_list.txt -c copy output.mp4 xdg-open output.mp4