Rust 实现类似 DeepSeek 的搜索工具
使用 Rust 构建一个高效、高性能的搜索工具需要结合异步 I/O、索引结构和查询优化。以下是一个简化实现的框架:
核心组件设计
索引结构
use std::collections::{HashMap, HashSet};
use tantivy::schema::{Schema, TEXT, STORED};
use tantivy::{doc, Index};
struct TextIndex {
schema: Schema,
index: Index,
doc_store: HashMap<u64, String>,
}
查询处理器
async fn query_index(
index: &TextIndex,
query: &str,
filters: Option<Vec<Filter>>
) -> Result<Vec<SearchResult>, Error> {
let searcher = index.reader.searcher();
let query_parser = QueryParser::for_index(&index, vec![index.schema.get_field("content")?]);
let query = query_parser.parse_query(query)?;
let top_docs = searcher.search(&query, &TopDocs::with_limit(10))?;
// ...结果处理逻辑
}
性能优化技术
异步任务调度
use tokio::sync::mpsc;
use rayon::prelude::*;
async fn parallel_query(
queries: Vec<String>,
index: Arc<TextIndex>
) -> Vec<Vec<SearchResult>> {
queries.par_iter().map(|q| {
tokio::runtime::Handle::current().block_on(query_index(&index, q))
}).collect()
}
内存管理
struct MemoryPool {
buffers: Vec<Vec<u8>>,
current_size: usize,
max_size: usize,
}
impl MemoryPool {
fn acquire(&mut self, size: usize) -> Option<Vec<u8>> {
if self.current_size + size <= self.max_size {
let buf = self.buffers.pop().unwrap_or_else(|| vec![0; size]);
self.current_size += size;
Some(buf)
} else {
None
}
}
}
完整工作流程
- 初始化索引构建器
fn build_index(documents: Vec<Document>) -> TextIndex {
let mut schema_builder = Schema::builder();
let content = schema_builder.add_text_field("content", TEXT | STORED);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema.clone());
// ...填充索引逻辑
}
- 启动网络服务
use warp::Filter;
async fn run_server(index: Arc<TextIndex>) {
let search = warp::path("search")
.and(warp::query())
.and_then(move |params| handle_search(params, index.clone()));
warp::serve(search).run(([127, 0, 0, 1], 3030)).await;
}
- 结果排序算法