2D曲线点云,含许多噪声,采用类似移动最小二乘的方法(MLS)分段拟合抛物线并投影至抛物线,进行点云平滑去噪。
更通俗的说法是让有一定宽度的曲线点云,变成一条细曲线上的点。
分两种情况进行讨论:
1)曲线前进方向与Y轴偏离较远;采用
2)曲线前进方向与Y轴较近;采用
注意 这里并没有采取二阶多项式拟合的形式,,因为这样可能导致过拟合,使用抛物线拟合可以让数据分布在曲线两侧,更符合曲线平滑的需求。
代码如下:
#pragma once
#include"common.h"
#include"CommonFunctions.h"
#include <vector>
#include <cmath>
#include <algorithm>
#include <Eigen/Dense> // 需要Eigen库,用于矩阵运算
class PointCloudSmoother {
public:
static void smooth(std::vector<pcl2d::Point2d>& points, double radius, int iterations) {
if (points.empty() || iterations <= 0) return;
std::vector<pcl2d::Point2d> smoothed_points = points;
for (int iter = 0; iter < iterations; ++iter) {
//#pragma omp parallel for
for (size_t i = 0; i < points.size(); ++i) {
// 1. 寻找邻域点
std::vector<size_t> neighbors = findNeighbors(smoothed_points, i, radius);
if (neighbors.size() < 5) continue; // 至少需要5个点才能拟合曲线
// 2. 计算局部曲率
double curvature = computeLocalCurvature(smoothed_points, neighbors);
// 3. 曲率自适应MLS平滑
smoothed_points[i] = mlsSmoothing(smoothed_points, i, neighbors, radius, curvature);
}
}
points = smoothed_points;
// 点云去重(基于距离阈值)
filterPointsByRadius(points, 0.02);
}
// 计算局部曲率
static double computeLocalCurvature(const std::vector<pcl2d::Point2d>& points, const std::vector<size_t>& neighbors) {
if (neighbors.size() < 3) return 0.0;
// 计算质心
pcl2d::Point2d centroid(0, 0);
for (size_t idx : neighbors) {
centroid.x += points[idx].x;
centroid.y += points[idx].y;
}
centroid.x /= neighbors.size();
centroid.y /= neighbors.size();
// PCA分析
Eigen::Matrix2d cov = Eigen::Matrix2d::Zero();
for (size_t idx : neighbors) {
double dx = points[idx].x - centroid.x;
double dy = points[idx].y - centroid.y;
cov(0, 0) += dx * dx;
cov(0, 1) += dx * dy;
cov(1, 0) += dy * dx;
cov(1, 1) += dy * dy;
}
// 计算特征值
Eigen::SelfAdjointEigenSolver<Eigen::Matrix2d> solver(cov);
Eigen::Vector2d eigenvalues = solver.eigenvalues();
// 曲率估计 = 最小特征值 / (最大特征值 + 最小特征值)
double min_eig = std::min(eigenvalues[0], eigenvalues[1]);
double max_eig = std::max(eigenvalues[0], eigenvalues[1]);
return min_eig / (max_eig + min_eig + 1e-6); // 避免除以零
}
private:
// 寻找邻域点(实际应用中应使用空间索引加速)
static std::vector<size_t> findNeighbors(const std::vector<pcl2d::Point2d>& points, size_t idx, double radius) {
std::vector<size_t> neighbors;
const pcl2d::Point2d& center = points[idx];
for (size_t i = 0; i < points.size(); ++i) {
double dx = points[i].x - center.x;
double dy = points[i].y - center.y;
double dist = std::sqrt(dx * dx + dy * dy);
if (dist < radius) {
neighbors.push_back(i);
}
}
return neighbors;
}
// 移动最小二乘平滑
static pcl2d::Point2d mlsSmoothing(const std::vector<pcl2d::Point2d>& points, size_t idx,
const std::vector<size_t>& neighbors, double radius, double curvature) {
const pcl2d::Point2d& center = points[idx];
// 曲率自适应参数
double sigma_s = radius * (1.0 - 0.5 * curvature); // 空间权重参数
double sigma_r = 0.1 * radius * (1.0 + curvature); // 值域权重参数
构建加权最小二乘问题
//Eigen::MatrixXd A(neighbors.size(), 6);
//Eigen::VectorXd b_x(neighbors.size());
//Eigen::VectorXd b_y(neighbors.size());
//Eigen::VectorXd weights(neighbors.size());
std::vector<pcl2d::Point2d> neighbor_pos;
for (size_t i = 0; i < neighbors.size(); ++i) {
size_t n_idx = neighbors[i];
const pcl2d::Point2d& p = points[n_idx];
neighbor_pos.push_back(p);
}
double a = 0, b = 0, c = 0;
auto type = fitParabola(neighbor_pos, a, b, c);
return ((type == FUNC_TYPE_FX) ? projectToParabola_fx(points[idx], a, b, c) : projectToParabola_fy(points[idx], a, b, c));
}
// 判断点集拟合的直线是否接近 y 轴
static bool isLineCloseToYAxis(const std::vector<pcl2d::Point2d>& points, double threshold = 10.0)
{
if (points.size() < 2) return false; // 至少需要2个点
// 1. 最小二乘法拟合直线 y = kx + b
double sum_x = 0.0, sum_y = 0.0, sum_xy = 0.0, sum_xx = 0.0;
for (const auto& p : points) {
sum_x += p.x;
sum_y += p.y;
sum_xy += p.x * p.y;
sum_xx += p.x * p.x;
}
double n = points.size();
double k = (n * sum_xy - sum_x * sum_y) / (n * sum_xx - sum_x * sum_x);
// 2. 判断斜率绝对值是否大于阈值
return std::abs(k) > threshold;
}
enum FUNC_TYPE
{
FUNC_TYPE_FX, // y = ax² + bx + c
FUNC_TYPE_FY // x = ay² + by + c
};
// 拟合抛物线
static FUNC_TYPE fitParabola(const std::vector<pcl2d::Point2d>& points, double& a, double& b, double& c)
{
const int n = points.size();
Eigen::MatrixXd A(n, 3);
Eigen::VectorXd b_vec(n);
FUNC_TYPE type = isLineCloseToYAxis(points)? FUNC_TYPE_FY : FUNC_TYPE_FX;
// 构建最小二乘问题 Ax = b
for (int i = 0; i < n; ++i)
{
double x = points[i].x;
b_vec[i] = points[i].y;
if(type == FUNC_TYPE_FY)
{
x = points[i].y;
b_vec[i] = points[i].x;
}
A(i, 0) = x * x;
A(i, 1) = x;
A(i, 2) = 1.0;
}
// 求解最小二乘问题
Eigen::Vector3d coeffs = A.colPivHouseholderQr().solve(b_vec);
a = coeffs[0];
b = coeffs[1];
c = coeffs[2];
return type;
}
// 计算点在抛物线上的投影 y = ax² + bx + c
static pcl2d::Point2d projectToParabola_fx(const pcl2d::Point2d& point, double a, double b, double c) {
double x = point.x;
double y = a * x * x + b * x + c;
return pcl2d::Point2d(x, y);
}
// 计算点在抛物线上的投影 x = ay² + by + c
static pcl2d::Point2d projectToParabola_fy(const pcl2d::Point2d& point, double a, double b, double c) {
double y = point.y;
double x = a * y * y + b * y + c;
return pcl2d::Point2d(x, y);
}
};
可以优化的方向
拟合时考虑距离相关权重,考虑曲率值相关的权重。