STM32G070x 单片机项目代码解析:基于 HAL 库的嵌入式系统开发

发布于:2025-06-26 ⋅ 阅读:(21) ⋅ 点赞:(0)
项目总体架构

该项目采用标准的 STM32 工程结构,主要包含以下几个部分:

  • 头文件包含:系统头文件和用户自定义头文件
  • 外设句柄定义:SPI、TIM、UART 等外设的句柄声明
  • 用户自定义变量:LED 控制、按键状态等标志位
  • 初始化函数:系统时钟、各外设的初始化配置
  • 主函数逻辑:系统初始化、外设启动和主循环处理
  • 辅助函数:错误处理、断言函数等
/* 头文件包含部分 */
#include "main.h"
#include "type.h"
#include "bsp.h"
#include "app.h"

/* 外设句柄定义 */
SPI_HandleTypeDef hspi1;
SPI_HandleTypeDef hspi2;
DMA_HandleTypeDef hdma_spi2_tx;
TIM_HandleTypeDef htim1;
TIM_HandleTypeDef htim3;
TIM_HandleTypeDef htim14;
UART_HandleTypeDef huart2;

/* 用户自定义变量 */
my_bool ledRedToggle = FALSE; //红色LED闪烁控制标志
uint16_t ledBlinkGear = 2; //LED闪烁频率档位
my_bool ledBlinkEnable = TRUE; //LED闪烁功能使能
my_bool key_check = FALSE; //按键检测状态标志
uint8_t DT_display[6] = {3, 1, 4, 1, 5, 9}; //自定义数字显示缓冲区

/* 主函数 */
int main(void)
{
  HAL_Init();
  SystemClock_Config();
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_SPI2_Init();
  // 其他外设初始化...
  
  /* 启动PWM和OLED初始化 */
  HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_1);
  bsp_oled_init();
  bsp_oled_ascii(20,20,"ABCD\0", WHITE);
  
  /* 主循环 */
  while (1)
  {
    if(ledRedToggle != FALSE) {
      // LED控制逻辑
    }
    if(key_check != FALSE) {
      // 按键检测逻辑
    }
    if(DT_show != FALSE) {
      // 显示更新逻辑
    }
  }
}
1. 系统时钟配置

系统时钟配置是 STM32 开发的基础,直接影响整个系统的性能。在SystemClock_Config函数中,配置了外部高速时钟 (HSE) 和 PLL 锁相环:

void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1);
  
  // 配置HSE和PLL
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV2;
  RCC_OscInitStruct.PLL.PLLN = 32;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  
  // 配置系统时钟、AHB和APB总线时钟
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
}

这里使用 HSE 作为 PLL 输入,通过 PLLM、PLLN 和 PLLP 参数配置,最终得到系统时钟频率。

2. 外设初始化

项目中初始化了多种外设,包括 SPI、TIM、UART 等:

static void MX_SPI1_Init(void)
{
  hspi1.Instance = SPI1;
  hspi1.Init.Mode = SPI_MODE_MASTER;
  hspi1.Init.Direction = SPI_DIRECTION_2LINES;
  hspi1.Init.DataSize = SPI_DATASIZE_4BIT;
  hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
  hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
  hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
  // 其他配置...
}
static void MX_TIM3_Init(void)
{
  htim3.Instance = TIM3;
  htim3.Init.Prescaler = 64-1; // 预分频器,降低时钟频率
  htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim3.Init.Period = 256-1; // 计数周期
  htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  
  // PWM配置
  sConfigOC.OCMode = TIM_OCMODE_PWM1;
  sConfigOC.Pulse = 0;
  sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
  HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_1);
}
static void MX_USART2_UART_Init(void)
{
  huart2.Instance = USART2;
  huart2.Init.BaudRate = 115200; // 波特率设置
  huart2.Init.WordLength = UART_WORDLENGTH_8B;
  huart2.Init.StopBits = UART_STOPBITS_1;
  huart2.Init.Parity = UART_PARITY_NONE;
  huart2.Init.Mode = UART_MODE_TX_RX;
}
// LED控制相关变量
my_bool ledRedToggle = FALSE; //红色LED闪烁控制标志
uint16_t ledBlinkGear = 2; //LED闪烁频率档位
my_bool ledBlinkEnable = TRUE; //LED闪烁功能使能

// 显示相关变量
uint8_t DT_display[6] = {3, 1, 4, 1, 5, 9}; // 初始显示3.14159
uint8_t dt_dp = 0x01; // 小数点显示位置

// 主循环中的功能处理
while (1)
{
  // LED状态切换
  if(ledRedToggle != FALSE) {
    ledRedToggle = FALSE;
    if(ledBlinkEnable==TRUE){
      bspLedToggle(led++);
      if(led==3) led = 0;
    }
  }
  
  // 按键检测
  if(key_check != FALSE){
    key_check = FALSE;
    key_updn = bspKeyCheck();
  }
  
  // 显示更新
  if(DT_show != FALSE){
    DT_show=FALSE;
    DT_SHOUW();
  }
}
主函数流程分析

主函数是整个程序的核心,其执行流程如下:

  1. 系统初始化

    • 调用HAL_Init()初始化 HAL 库
    • 配置系统时钟SystemClock_Config()
  2. 外设初始化

    • 依次初始化 GPIO、DMA、SPI、UART、TIM 等外设
    • 启动 PWM 输出 (HAL_TIM_PWM_Start())
  3. 自定义模块初始化

    • 初始化 OLED 显示屏 (bsp_oled_init())
    • 显示测试内容 (bsp_oled_ascii())
  4. 主循环

    • 持续检测 LED 控制标志并更新 LED 状态
    • 检测按键输入并处理
    • 根据需要更新显示内容

这种循环检测的方式称为轮询方式,适合简单的嵌入式系统。对于更复杂的系统,通常会结合中断方式来提高响应速度。

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2025 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "type.h"
#include "bsp.h"
#include "app.h"
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */

/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
SPI_HandleTypeDef hspi1;
SPI_HandleTypeDef hspi2;
DMA_HandleTypeDef hdma_spi2_tx;

TIM_HandleTypeDef htim1;
TIM_HandleTypeDef htim3;
TIM_HandleTypeDef htim14;

UART_HandleTypeDef huart2;

/* USER CODE BEGIN PV */
//??????
my_bool ledRedToggle = FALSE; //红色LED闪烁控制标志(FALSE=常亮,TRUE=闪烁)
uint16_t ledBlinkGear = 2; //LED闪烁频率档位(数值越大,闪烁越慢)
my_bool ledBlinkEnable = TRUE; //LED闪烁功能使能
my_bool key_check = FALSE; //按键检测状态标志
my_bool DT_show = FALSE; //日期时间显示模式标志

// 自定义数字显示缓冲区 - 用于6位数码管显示自定义内容
uint8_t DT_display[6] = {3, 1, 4, 1, 5, 9};
uint8_t dt_dp = 0x01; //小数点显示位置掩码
/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_SPI2_Init(void);
static void MX_USART2_UART_Init(void);
static void MX_TIM1_Init(void);
static void MX_TIM3_Init(void);
static void MX_TIM14_Init(void);
static void MX_SPI1_Init(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{

  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_SPI2_Init();
  MX_USART2_UART_Init();
  MX_TIM1_Init();
  MX_TIM3_Init();
  MX_TIM14_Init();
  MX_SPI1_Init();
  /* USER CODE BEGIN 2 */
	HAL_TIM_PWM_Init(&htim3);
	HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_1);
	HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_2);
	HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_3);
	TIM3->CCR1=50;
	TIM3->CCR2=50;
	TIM3->CCR3=50;
	
	//BUZZ
	HAL_TIM_PWM_Init(&htim14);
	HAL_TIM_PWM_Start(&htim14, TIM_CHANNEL_1);
	TIM14->CCR1 = 5000;
	
	//LED
	uint8_t led=0;
	//OLED
	bsp_oled_init();
	bsp_oled_clear();
	bsp_oled_ascii(20,20,"ABCD\0", WHITE);
	
	bsp_oled_line(1, 1, 128, 64, RED);
	bsp_oled_show();
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
	uint16_t key_updn = 0x0000;
		/*
    HAL_GPIO_WritePin(LED_R_GPIO_Port, LED_R_Pin, GPIO_PIN_RESET);
		HAL_Delay(1000);
		HAL_GPIO_WritePin(LED_R_GPIO_Port, LED_R_Pin, GPIO_PIN_SET);
		HAL_Delay(1000);
		*/
		
		if(ledRedToggle != FALSE){
			ledRedToggle = FALSE;
			if(ledBlinkEnable==TRUE){
				bspLedToggle(led++);
				if(led==3) led = 0;
			}
			//HAL_GPIO_TogglePin(LED_R_GPIO_Port, LED_R_Pin);
			//HAL_Delay(1000);
		}
		if(key_check != FALSE){
			key_check = FALSE;
			key_updn = bspKeyCheck();
			
			
		}
		if(key_updn != 0x0000){
			keyDisp(key_updn);//        
			key_updn = 0x0000;
		}
		if(DT_show != FALSE){
			DT_show=FALSE;
			DT_SHOUW();
			//bsp_oled_show();
			
		}
		
		/*
		HAL_GPIO_TogglePin(LED_R_GPIO_Port, LED_R_Pin);
		HAL_Delay(1000);
		*/


  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Configure the main internal regulator output voltage
  */
  HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1);

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV2;
  RCC_OscInitStruct.PLL.PLLN = 32;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief SPI1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_SPI1_Init(void)
{

  /* USER CODE BEGIN SPI1_Init 0 */

  /* USER CODE END SPI1_Init 0 */

  /* USER CODE BEGIN SPI1_Init 1 */

  /* USER CODE END SPI1_Init 1 */
  /* SPI1 parameter configuration*/
  hspi1.Instance = SPI1;
  hspi1.Init.Mode = SPI_MODE_MASTER;
  hspi1.Init.Direction = SPI_DIRECTION_2LINES;
  hspi1.Init.DataSize = SPI_DATASIZE_4BIT;
  hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
  hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
  hspi1.Init.NSS = SPI_NSS_SOFT;
  hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
  hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
  hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
  hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  hspi1.Init.CRCPolynomial = 7;
  hspi1.Init.CRCLength = SPI_CRC_LENGTH_DATASIZE;
  hspi1.Init.NSSPMode = SPI_NSS_PULSE_ENABLE;
  if (HAL_SPI_Init(&hspi1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN SPI1_Init 2 */

  /* USER CODE END SPI1_Init 2 */

}

/**
  * @brief SPI2 Initialization Function
  * @param None
  * @retval None
  */
static void MX_SPI2_Init(void)
{

  /* USER CODE BEGIN SPI2_Init 0 */

  /* USER CODE END SPI2_Init 0 */

  /* USER CODE BEGIN SPI2_Init 1 */

  /* USER CODE END SPI2_Init 1 */
  /* SPI2 parameter configuration*/
  hspi2.Instance = SPI2;
  hspi2.Init.Mode = SPI_MODE_MASTER;
  hspi2.Init.Direction = SPI_DIRECTION_2LINES;
  hspi2.Init.DataSize = SPI_DATASIZE_8BIT;
  hspi2.Init.CLKPolarity = SPI_POLARITY_HIGH;
  hspi2.Init.CLKPhase = SPI_PHASE_2EDGE;
  hspi2.Init.NSS = SPI_NSS_SOFT;
  hspi2.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_16;
  hspi2.Init.FirstBit = SPI_FIRSTBIT_MSB;
  hspi2.Init.TIMode = SPI_TIMODE_DISABLE;
  hspi2.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  hspi2.Init.CRCPolynomial = 7;
  hspi2.Init.CRCLength = SPI_CRC_LENGTH_DATASIZE;
  hspi2.Init.NSSPMode = SPI_NSS_PULSE_DISABLE;
  if (HAL_SPI_Init(&hspi2) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN SPI2_Init 2 */

  /* USER CODE END SPI2_Init 2 */

}

/**
  * @brief TIM1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_TIM1_Init(void)
{

  /* USER CODE BEGIN TIM1_Init 0 */

  /* USER CODE END TIM1_Init 0 */

  TIM_Encoder_InitTypeDef sConfig = {0};
  TIM_MasterConfigTypeDef sMasterConfig = {0};

  /* USER CODE BEGIN TIM1_Init 1 */

  /* USER CODE END TIM1_Init 1 */
  htim1.Instance = TIM1;
  htim1.Init.Prescaler = 0;
  htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim1.Init.Period = 65535;
  htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim1.Init.RepetitionCounter = 0;
  htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  sConfig.EncoderMode = TIM_ENCODERMODE_TI1;
  sConfig.IC1Polarity = TIM_ICPOLARITY_RISING;
  sConfig.IC1Selection = TIM_ICSELECTION_DIRECTTI;
  sConfig.IC1Prescaler = TIM_ICPSC_DIV1;
  sConfig.IC1Filter = 0;
  sConfig.IC2Polarity = TIM_ICPOLARITY_RISING;
  sConfig.IC2Selection = TIM_ICSELECTION_DIRECTTI;
  sConfig.IC2Prescaler = TIM_ICPSC_DIV1;
  sConfig.IC2Filter = 0;
  if (HAL_TIM_Encoder_Init(&htim1, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterOutputTrigger2 = TIM_TRGO2_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN TIM1_Init 2 */

  /* USER CODE END TIM1_Init 2 */

}

/**
  * @brief TIM3 Initialization Function
  * @param None
  * @retval None
  */
static void MX_TIM3_Init(void)
{

  /* USER CODE BEGIN TIM3_Init 0 */

  /* USER CODE END TIM3_Init 0 */

  TIM_MasterConfigTypeDef sMasterConfig = {0};
  TIM_OC_InitTypeDef sConfigOC = {0};

  /* USER CODE BEGIN TIM3_Init 1 */

  /* USER CODE END TIM3_Init 1 */
  htim3.Instance = TIM3;
  htim3.Init.Prescaler = 64-1;
  htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim3.Init.Period = 256-1;
  htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  if (HAL_TIM_PWM_Init(&htim3) != HAL_OK)
  {
    Error_Handler();
  }
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
  sConfigOC.OCMode = TIM_OCMODE_PWM1;
  sConfigOC.Pulse = 0;
  sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
  sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  if (HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_2) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_3) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN TIM3_Init 2 */

  /* USER CODE END TIM3_Init 2 */
  HAL_TIM_MspPostInit(&htim3);

}

/**
  * @brief TIM14 Initialization Function
  * @param None
  * @retval None
  */
static void MX_TIM14_Init(void)
{

  /* USER CODE BEGIN TIM14_Init 0 */

  /* USER CODE END TIM14_Init 0 */

  TIM_OC_InitTypeDef sConfigOC = {0};

  /* USER CODE BEGIN TIM14_Init 1 */

  /* USER CODE END TIM14_Init 1 */
  htim14.Instance = TIM14;
  htim14.Init.Prescaler = 0;
  htim14.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim14.Init.Period = 65535;
  htim14.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim14.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  if (HAL_TIM_Base_Init(&htim14) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_TIM_PWM_Init(&htim14) != HAL_OK)
  {
    Error_Handler();
  }
  sConfigOC.OCMode = TIM_OCMODE_PWM1;
  sConfigOC.Pulse = 0;
  sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
  sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  if (HAL_TIM_PWM_ConfigChannel(&htim14, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN TIM14_Init 2 */

  /* USER CODE END TIM14_Init 2 */
  HAL_TIM_MspPostInit(&htim14);

}

/**
  * @brief USART2 Initialization Function
  * @param None
  * @retval None
  */
static void MX_USART2_UART_Init(void)
{

  /* USER CODE BEGIN USART2_Init 0 */

  /* USER CODE END USART2_Init 0 */

  /* USER CODE BEGIN USART2_Init 1 */

  /* USER CODE END USART2_Init 1 */
  huart2.Instance = USART2;
  huart2.Init.BaudRate = 115200;
  huart2.Init.WordLength = UART_WORDLENGTH_8B;
  huart2.Init.StopBits = UART_STOPBITS_1;
  huart2.Init.Parity = UART_PARITY_NONE;
  huart2.Init.Mode = UART_MODE_TX_RX;
  huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart2.Init.OverSampling = UART_OVERSAMPLING_16;
  huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
  huart2.Init.ClockPrescaler = UART_PRESCALER_DIV1;
  huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
  if (HAL_UART_Init(&huart2) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_UARTEx_SetTxFifoThreshold(&huart2, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_UARTEx_SetRxFifoThreshold(&huart2, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_UARTEx_DisableFifoMode(&huart2) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN USART2_Init 2 */

  /* USER CODE END USART2_Init 2 */

}

/**
  * Enable DMA controller clock
  */
static void MX_DMA_Init(void)
{

  /* DMA controller clock enable */
  __HAL_RCC_DMA1_CLK_ENABLE();

  /* DMA interrupt init */
  /* DMA1_Channel1_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0);
  HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};
  /* USER CODE BEGIN MX_GPIO_Init_1 */
  /* USER CODE END MX_GPIO_Init_1 */

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOC_CLK_ENABLE();
  __HAL_RCC_GPIOF_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();
  __HAL_RCC_GPIOB_CLK_ENABLE();
  __HAL_RCC_GPIOD_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOC, DT0_Pin|OLED_CS__Pin|LED_R_Pin|LED_Y_Pin
                          |DT1_Pin, GPIO_PIN_RESET);

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOA, LED_G_Pin|OLED_RES__Pin|OLED_D_C__Pin|FLASH_CS__Pin
                          |DT5_Pin, GPIO_PIN_RESET);

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOB, SEG_0_Pin|SEG_1_Pin|SEG_2_Pin|SEG_3_Pin
                          |SEG_4_Pin|SEG_5_Pin|SEG_6_Pin|SEG_7_Pin, GPIO_PIN_RESET);

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOD, DT4_Pin|DT3_Pin|DT2_Pin, GPIO_PIN_RESET);

  /*Configure GPIO pins : DT0_Pin OLED_CS__Pin LED_R_Pin LED_Y_Pin
                           DT1_Pin */
  GPIO_InitStruct.Pin = DT0_Pin|OLED_CS__Pin|LED_R_Pin|LED_Y_Pin
                          |DT1_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);

  /*Configure GPIO pins : KEYS1_Pin KEYS2_Pin KEYS3_Pin */
  GPIO_InitStruct.Pin = KEYS1_Pin|KEYS2_Pin|KEYS3_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  GPIO_InitStruct.Pull = GPIO_PULLUP;
  HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);

  /*Configure GPIO pins : LED_G_Pin OLED_RES__Pin OLED_D_C__Pin FLASH_CS__Pin
                           DT5_Pin */
  GPIO_InitStruct.Pin = LED_G_Pin|OLED_RES__Pin|OLED_D_C__Pin|FLASH_CS__Pin
                          |DT5_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

  /*Configure GPIO pins : SEG_0_Pin SEG_1_Pin SEG_2_Pin SEG_3_Pin
                           SEG_4_Pin SEG_5_Pin SEG_6_Pin SEG_7_Pin */
  GPIO_InitStruct.Pin = SEG_0_Pin|SEG_1_Pin|SEG_2_Pin|SEG_3_Pin
                          |SEG_4_Pin|SEG_5_Pin|SEG_6_Pin|SEG_7_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

  /*Configure GPIO pin : KEYS4_Pin */
  GPIO_InitStruct.Pin = KEYS4_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  GPIO_InitStruct.Pull = GPIO_PULLUP;
  HAL_GPIO_Init(KEYS4_GPIO_Port, &GPIO_InitStruct);

  /*Configure GPIO pin : KEYS5_Pin */
  GPIO_InitStruct.Pin = KEYS5_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING_FALLING;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  HAL_GPIO_Init(KEYS5_GPIO_Port, &GPIO_InitStruct);

  /*Configure GPIO pins : DT4_Pin DT3_Pin DT2_Pin */
  GPIO_InitStruct.Pin = DT4_Pin|DT3_Pin|DT2_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);

  /* EXTI interrupt init*/
  HAL_NVIC_SetPriority(EXTI4_15_IRQn, 3, 0);
  HAL_NVIC_EnableIRQ(EXTI4_15_IRQn);

  /* USER CODE BEGIN MX_GPIO_Init_2 */
  /* USER CODE END MX_GPIO_Init_2 */
}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */