Day.45

发布于:2025-06-29 ⋅ 阅读:(19) ⋅ 点赞:(0)

tensorboard:
log_dir = "runs/cifar10_cnn_exp"
if os.path.exists(log_dir): 
    version = 1 
    while os.path.exists(f"{log_dir}_v{version}"): 
        version += 1 
    log_dir = f"{log_dir}_v{version}" 
writer = SummaryWriter(log_dir) 
print(f"TensorBoard 日志目录: {log_dir}") # 所以第一次是cifar10_cnn_exp、第二次是cifar10_cnn_exp_v1
def train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs, writer):
    model.train()
    global_step = 0  

    # 记录模型结构和训练图像
    dataiter = iter(train_loader)
    images, labels = next(dataiter)
    images = images.to(device)
    writer.add_graph(model, images)
    
    img_grid = torchvision.utils.make_grid(images[:8].cpu())
    writer.add_image('原始训练图像(增强前)', img_grid, global_step=0)

    for epoch in range(epochs):
        running_loss = 0.0
        correct = 0
        total = 0
        
        for batch_idx, (data, target) in enumerate(train_loader):
            data, target = data.to(device), target.to(device)
            
            optimizer.zero_grad()
            output = model(data)
            loss = criterion(output, target)
            loss.backward()
            optimizer.step()

            # 统计准确率
            running_loss += loss.item()
            _, predicted = output.max(1)
            total += target.size(0)
            correct += predicted.eq(target).sum().item()

            # 记录每个 batch 的损失、准确率和学习率
            batch_acc = 100. * correct / total
            writer.add_scalar('Train/Batch Loss', loss.item(), global_step)
            writer.add_scalar('Train/Batch Accuracy', batch_acc, global_step)
            writer.add_scalar('Train/Learning Rate', optimizer.param_groups[0]['lr'], global_step)

            # 每 200 个 batch 记录一次参数直方图
            if (batch_idx + 1) % 200 == 0:
                for name, param in model.named_parameters():
                    writer.add_histogram(f'Weights/{name}', param, global_step)
                    if param.grad is not None:
                        writer.add_histogram(f'Gradients/{name}', param.grad, global_step)

            global_step += 1

        # 计算 epoch 级训练指标
        epoch_train_loss = running_loss / len(train_loader)
        epoch_train_acc = 100. * correct / total
        writer.add_scalar('Train/Epoch Loss', epoch_train_loss, epoch)
        writer.add_scalar('Train/Epoch Accuracy', epoch_train_acc, epoch)

        # 测试阶段
        model.eval()
        test_loss = 0
        correct_test = 0
        total_test = 0
        wrong_images = []
        wrong_labels = []
        wrong_preds = []

        with torch.no_grad():
            for data, target in test_loader:
                data, target = data.to(device), target.to(device)
                output = model(data)
                test_loss += criterion(output, target).item()
                _, predicted = output.max(1)
                total_test += target.size(0)
                correct_test += predicted.eq(target).sum().item()

                # 收集错误预测样本
                wrong_mask = (predicted != target)
                if wrong_mask.sum() > 0:
                    wrong_batch_images = data[wrong_mask][:8].cpu()
                    wrong_batch_labels = target[wrong_mask][:8].cpu()
                    wrong_batch_preds = predicted[wrong_mask][:8].cpu()
                    wrong_images.extend(wrong_batch_images)
                    wrong_labels.extend(wrong_batch_labels)
                    wrong_preds.extend(wrong_batch_preds)

        # 计算 epoch 级测试指标
        epoch_test_loss = test_loss / len(test_loader)
        epoch_test_acc = 100. * correct_test / total_test
        writer.add_scalar('Test/Epoch Loss', epoch_test_loss, epoch)
        writer.add_scalar('Test/Epoch Accuracy', epoch_test_acc, epoch)

        # 可视化错误预测样本
        if wrong_images:
            wrong_img_grid = torchvision.utils.make_grid(wrong_images)
            writer.add_image('错误预测样本', wrong_img_grid, epoch)
            wrong_text = [f"真实: {classes[wl]}, 预测: {classes[wp]}" 
                         for wl, wp in zip(wrong_labels, wrong_preds)]
            writer.add_text('错误预测标签', '\n'.join(wrong_text), epoch)

        # 更新学习率调度器
        scheduler.step(epoch_test_loss)
        print(f'Epoch {epoch+1}/{epochs} 完成 | 测试准确率: {epoch_test_acc:.2f}%')

    writer.close()
    return epoch_test_acc

classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

# 执行训练
epochs = 20
print("开始使用CNN训练模型...")
print("训练后执行: tensorboard --logdir=runs 查看可视化")

final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs, writer)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")@浙大疏锦行


网站公告

今日签到

点亮在社区的每一天
去签到