定时器
定时器主要作用就是:设置超时时间,执行超时函数。
按键按下存在抖动,为了消除抖动可以设置定时器,如上图所示,按下一次按键会产生多次抖动,即会产生多次中断,在每次中断产生的时候,设置定时器,定时器时间是当前时间+超时时间,这样每次中断产生都会重新设置定时器时间,等到按键不抖动稳定的时候,就不会再改变定时器时间,这时候我们再记录按键值,就很稳定了。
内核中使用定时器的主要函数
timer_setup(老版本setup_timer)
设置定时器,主要是初始化timer_list结构体,设置其中参数和函数
#define timer_setup(timer, callback, flags) \
__init_timer((timer), (callback), (flags))
add_timer
向内核添加定时器,timer->expires表示超时时间,时间到了内核会自动调用timer->function。
void add_timer(struct timer_list *timer)
{
BUG_ON(timer_pending(timer));
mod_timer(timer, timer->expires);
}
mod_timer
修改定时器超时时间
int mod_timer(struct timer_list *timer, unsigned long expires)
{
return __mod_timer(timer, expires, 0);
}
del_timer
删除定时器
int del_timer(struct timer_list *timer)
{
struct timer_base *base;
unsigned long flags;
int ret = 0;
debug_assert_init(timer);
if (timer_pending(timer)) {
base = lock_timer_base(timer, &flags);
ret = detach_if_pending(timer, base, true);
raw_spin_unlock_irqrestore(&base->lock, flags);
}
return ret;
}
查看系统定时器时间:进入到内核目录,vi .config 搜索/CONFIG_HZ
3568系统tick如上图所示 3.33ms发生一次中断。每发生一次中断,全局变量jiffies会加1,所以定时器时间都是基于jiffies的。
修改时间有下面两种方法
/* add_timer之前 */
timer.expires = jiffies + xxx; /* xxx * 3.33ms */
timer.expires = jiffies + 2*HZ;/* jiffies 再加上 2 秒的时间 */
/* add_timer之后 */
mod_timer(&timer , jiffies + xxx);
mod_timer(&timer , jiffies + 2*HZ);
含定时器的驱动代码
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/uaccess.h>
#include <linux/types.h>
#include <linux/device.h>
#include <linux/gpio/consumer.h>
#include <linux/platform_device.h>
#include <linux/of_device.h>
#include <linux/of_gpio.h>
#include <linux/interrupt.h>
#include <linux/gfp.h>
#include <linux/of_irq.h>
#include <linux/poll.h>
#include <linux/timer.h>
#define BUF_LEN 128
#define NEXT_POS(x) ((x + 1) % BUF_LEN)
static DECLARE_WAIT_QUEUE_HEAD(gpio_key_wait);
static struct fasync_struct *button_fasync;
static struct class *mybutton_class;
static struct gpio_inf *gpio_if;
static int major;
static int g_key[BUF_LEN];
static int r, w;
struct gpio_inf {
int gpio;
int irq;
struct gpio_desc *gpiod;
enum of_gpio_flags flag;
struct timer_list my_button_timer;
};
static int is_key_buf_empty(void) {
return (r == w);
}
static int is_key_buf_full(void) {
return (r == NEXT_POS(w));
}
static void put_key(int key) {
if (!is_key_buf_full()) {
g_key[w] = key;
w = NEXT_POS(w);
}
}
static int get_key(void) {
int key = 0;
if (!is_key_buf_empty()) {
key = g_key[r];
r = NEXT_POS(r);
}
return key;
}
static void mybutton_keys_timer(struct timer_list *t)
{
int val, key;
struct gpio_inf *gf = from_timer(gf, t, my_button_timer);
if(!gf)
return;
val = gpio_get_value(gf->gpio);
printk("mybutton_keys_timer key %d value%d\n", gf->gpio, val);
key = (gf->gpio << 8) | val;
put_key(key);
wake_up_interruptible(&gpio_key_wait);
kill_fasync(&button_fasync, SIGIO, POLL_IN);
return;
}
static irqreturn_t my_key_handler(int irq, void *dev_id)
{
struct gpio_inf * inf = (struct gpio_inf *)dev_id;
printk("my_key_handler %s %s %d key:%d\n", __FILE__, __FUNCTION__, __LINE__ , inf->gpio);
mod_timer(&inf->my_button_timer, jiffies + HZ/50);
return IRQ_HANDLED;
}
static ssize_t gpio_button_read(struct file *file, char __user *buf, size_t size, loff_t *off) {
int err, key;
//printk("%s %s %d\n", __FILE__, __FUNCTION__, __LINE__);
if(is_key_buf_empty() && (file->f_flags & O_NONBLOCK))
return -EAGAIN;
wait_event_interruptible(gpio_key_wait, !is_key_buf_empty());
key = get_key();
err = copy_to_user(buf, &key, 4);
return 4;
}
static unsigned int gpio_button_poll(struct file *fp, poll_table *wait) {
//printk("%s %s %d\n", __FILE__, __FUNCTION__, __LINE__);
poll_wait(fp, &gpio_key_wait, wait);
return is_key_buf_empty() ? 0 : POLLIN | POLLRDNORM;
}
static int gpio_button_fasync(int fd, struct file *file, int on)
{
//printk("%s %s %d\n" , __FILE__ , __FUNCTION__ , __LINE__);
if(fasync_helper(fd, file, on , &button_fasync) >= 0)
return 0;
else
return -EIO;
}
static struct file_operations button_opr = {
.owner = THIS_MODULE,
.read = gpio_button_read,
.poll = gpio_button_poll,
.fasync = gpio_button_fasync,
};
static const struct of_device_id my_key[] = {
{ .compatible = "my,mybutton" },
{},
};
MODULE_DEVICE_TABLE(of, my_key);
static int chip_demo_gpio_probe(struct platform_device *pdev) {
int count, i, err;
struct device_node *node;
enum of_gpio_flags flag;
printk("%s %s %d\n", __FILE__, __FUNCTION__, __LINE__);
node = pdev->dev.of_node;
count = of_gpio_count(node);
if (count <= 0) {
dev_err(&pdev->dev, "Invalid GPIO count: %d\n", count);
return -EINVAL;
}
gpio_if = kzalloc(count * sizeof(struct gpio_inf), GFP_KERNEL);
if (!gpio_if) {
dev_err(&pdev->dev, "Failed to allocate memory\n");
return -ENOMEM;
}
for (i = 0; i < count; i++) {
gpio_if[i].gpio = of_get_gpio_flags(node, i, &flag);
gpio_if[i].irq = gpio_to_irq(gpio_if[i].gpio);
gpio_if[i].gpiod = gpio_to_desc(gpio_if[i].gpio);
gpio_if[i].flag = flag & OF_GPIO_ACTIVE_LOW;
err = request_irq(gpio_if[i].irq, my_key_handler,
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
"my_key", &gpio_if[i]);
if (err) {
printk("request_irq %d failed\n", gpio_if[i].irq);
}
timer_setup(&gpio_if[i].my_button_timer, mybutton_keys_timer , 0);
gpio_if[i].my_button_timer.expires = ~0; /* 最大超时时间 */
add_timer(&gpio_if[i].my_button_timer);
}
return 0;
}
static int chip_demo_gpio_remove(struct platform_device *pdev) {
int count, i;
struct device_node *node = pdev->dev.of_node;
printk("%s %s %d\n", __FILE__, __FUNCTION__, __LINE__);
count = of_gpio_count(node);
for (i = 0; i < count; i++) {
del_timer(&gpio_if[i].my_button_timer);
free_irq(gpio_if[i].irq, &gpio_if[i]);
}
kfree(gpio_if);
return 0;
}
static struct platform_driver my_key_drv = {
.probe = chip_demo_gpio_probe,
.remove = chip_demo_gpio_remove,
.driver = {
.name = "my_key_drv",
.of_match_table = my_key,
}
};
static int __init gpio_key_drv_init(void) {
int err;
// 注册字符设备
major = register_chrdev(0, "my_button", &button_opr);
if (major < 0) {
printk("register_chrdev failed: %d\n", major);
return major;
}
mybutton_class = class_create(THIS_MODULE, "mybutton_class");
if (IS_ERR(mybutton_class)) {
unregister_chrdev(major, "my_button");
printk("class_create failed\n");
return PTR_ERR(mybutton_class);
}
device_create(mybutton_class, NULL, MKDEV(major, 0), NULL, "my_button");
printk("char device /dev/my_button created, major=%d\n", major);
// 注册 platform 驱动
err = platform_driver_register(&my_key_drv);
if (err) {
device_destroy(mybutton_class, MKDEV(major, 0));
class_destroy(mybutton_class);
unregister_chrdev(major, "my_button");
return err;
}
return 0;
}
static void __exit gpio_key_drv_exit(void) {
platform_driver_unregister(&my_key_drv);
device_destroy(mybutton_class, MKDEV(major, 0));
class_destroy(mybutton_class);
unregister_chrdev(major, "my_button");
printk("char device /dev/my_button removed\n");
}
module_init(gpio_key_drv_init);
module_exit(gpio_key_drv_exit);
MODULE_LICENSE("GPL");
tasklet
当硬件中断发生时,系统首先调用对应的硬件中断处理函数(ISR),该函数完成紧急任务后迅速返回。随后,系统会处理软中断(softirq),内核维护了一个软中断处理函数数组 softirq_vec[]
,其中包含了用于执行延后任务的函数。作为软中断的一种实现,tasklet被安排在软中断中执行;当中断处理函数通过 tasklet_schedule()
调度tasklet时,该tasklet被加入执行链表。软中断触发时,系统调用 tasklet_action()
遍历tasklet链表,依次执行每个tasklet的处理函数,从而完成硬件中断的后续工作。
根据上述流程,可以得出:
1、为每个按键添加tasklet。tasklet_init()
2、写软中断执行函数
2、在request_irq的中断处理函数中,调度tasklet。tasklet_schedule()。
将tasklet加入软中断执行链表。
驱动程序代码
这里我在结构体里面添加了last_val,为了判断按键按下是否发生变化,变化则记录其值,没变化就不记录,这是因为正点原子RK3568中使用GPIO引脚电平来模拟按键按下和松开,我的板子在这块贼不稳定,一会就跳出一大堆信息,如下图所示:
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/uaccess.h>
#include <linux/types.h>
#include <linux/device.h>
#include <linux/gpio/consumer.h>
#include <linux/platform_device.h>
#include <linux/of_device.h>
#include <linux/of_gpio.h>
#include <linux/interrupt.h>
#include <linux/gfp.h>
#include <linux/of_irq.h>
#include <linux/poll.h>
#include <linux/timer.h>
#define BUF_LEN 128
#define NEXT_POS(x) ((x + 1) % BUF_LEN)
static DECLARE_WAIT_QUEUE_HEAD(gpio_key_wait);
static struct fasync_struct *button_fasync;
static struct class *mybutton_class;
static struct gpio_inf *gpio_if;
static int major;
static int g_key[BUF_LEN];
static int r, w;
struct gpio_inf {
int gpio;
int irq;
int last_val;
struct gpio_desc *gpiod;
enum of_gpio_flags flag;
struct timer_list my_button_timer;
struct tasklet_struct task;
};
static int is_key_buf_empty(void) {
return (r == w);
}
static int is_key_buf_full(void) {
return (r == NEXT_POS(w));
}
static void put_key(int key) {
if (!is_key_buf_full()) {
g_key[w] = key;
w = NEXT_POS(w);
}
}
static int get_key(void) {
int key = 0;
if (!is_key_buf_empty()) {
key = g_key[r];
r = NEXT_POS(r);
}
return key;
}
static void mybutton_keys_timer(struct timer_list *t)
{
int val, key;
struct gpio_inf *gf = from_timer(gf, t, my_button_timer);
if(!gf)
return;
val = gpio_get_value(gf->gpio);
if (val != gf->last_val) {
gf->last_val = val; // 更新记录值
return; // 状态不稳定,忽略这次
}
printk("mybutton_keys_timer key %d value%d\n", gf->gpio, val);
key = (gf->gpio << 8) | val;
put_key(key);
wake_up_interruptible(&gpio_key_wait);
kill_fasync(&button_fasync, SIGIO, POLL_IN);
return;
}
static void my_button_tasklet(unsigned long data)
{
int val, key;
struct gpio_inf *gf = (struct gpio_inf *)data;
if(!gf)
return;
val = gpio_get_value(gf->gpio);
if (val != gf->last_val) {
gf->last_val = val;
return;
}
printk("my_button_tasklet key %d value%d\n", gf->gpio, val);
key = (gf->gpio << 8) | val;
put_key(key);
wake_up_interruptible(&gpio_key_wait);
kill_fasync(&button_fasync, SIGIO, POLL_IN);
return;
}
static irqreturn_t my_key_handler(int irq, void *dev_id)
{
struct gpio_inf * inf = (struct gpio_inf *)dev_id;
//printk("my_key_handler %s %s %d key:%d\n", __FILE__, __FUNCTION__, __LINE__ , inf->gpio);
tasklet_schedule(&inf->task);
mod_timer(&inf->my_button_timer, jiffies + HZ/50);
return IRQ_HANDLED;
}
static ssize_t gpio_button_read(struct file *file, char __user *buf, size_t size, loff_t *off) {
int err, key;
//printk("%s %s %d\n", __FILE__, __FUNCTION__, __LINE__);
if(is_key_buf_empty() && (file->f_flags & O_NONBLOCK))
return -EAGAIN;
wait_event_interruptible(gpio_key_wait, !is_key_buf_empty());
key = get_key();
err = copy_to_user(buf, &key, 4);
return 4;
}
static unsigned int gpio_button_poll(struct file *fp, poll_table *wait) {
//printk("%s %s %d\n", __FILE__, __FUNCTION__, __LINE__);
poll_wait(fp, &gpio_key_wait, wait);
return is_key_buf_empty() ? 0 : POLLIN | POLLRDNORM;
}
static int gpio_button_fasync(int fd, struct file *file, int on)
{
//printk("%s %s %d\n" , __FILE__ , __FUNCTION__ , __LINE__);
if(fasync_helper(fd, file, on , &button_fasync) >= 0)
return 0;
else
return -EIO;
}
static struct file_operations button_opr = {
.owner = THIS_MODULE,
.read = gpio_button_read,
.poll = gpio_button_poll,
.fasync = gpio_button_fasync,
};
static const struct of_device_id my_key[] = {
{ .compatible = "my,mybutton" },
{},
};
MODULE_DEVICE_TABLE(of, my_key);
static int chip_demo_gpio_probe(struct platform_device *pdev) {
int count, i, err;
struct device_node *node;
enum of_gpio_flags flag;
printk("%s %s %d\n", __FILE__, __FUNCTION__, __LINE__);
node = pdev->dev.of_node;
count = of_gpio_count(node);
if (count <= 0) {
dev_err(&pdev->dev, "Invalid GPIO count: %d\n", count);
return -EINVAL;
}
gpio_if = kzalloc(count * sizeof(struct gpio_inf), GFP_KERNEL);
if (!gpio_if) {
dev_err(&pdev->dev, "Failed to allocate memory\n");
return -ENOMEM;
}
for (i = 0; i < count; i++) {
gpio_if[i].gpio = of_get_gpio_flags(node, i, &flag);
gpio_if[i].irq = gpio_to_irq(gpio_if[i].gpio);
gpio_if[i].gpiod = gpio_to_desc(gpio_if[i].gpio);
gpio_if[i].flag = flag & OF_GPIO_ACTIVE_LOW;
gpio_if[i].last_val = gpio_get_value(gpio_if[i].gpio);
err = request_irq(gpio_if[i].irq, my_key_handler,
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
"my_key", &gpio_if[i]);
if (err) {
printk("request_irq %d failed\n", gpio_if[i].irq);
}
timer_setup(&gpio_if[i].my_button_timer, mybutton_keys_timer , 0);
gpio_if[i].my_button_timer.expires = ~0;
add_timer(&gpio_if[i].my_button_timer);
tasklet_init(&gpio_if[i].task, my_button_tasklet, (unsigned long)&gpio_if[i]);
}
return 0;
}
static int chip_demo_gpio_remove(struct platform_device *pdev) {
int count, i;
struct device_node *node = pdev->dev.of_node;
printk("%s %s %d\n", __FILE__, __FUNCTION__, __LINE__);
count = of_gpio_count(node);
for (i = 0; i < count; i++) {
del_timer(&gpio_if[i].my_button_timer);
free_irq(gpio_if[i].irq, &gpio_if[i]);
tasklet_kill(&gpio_if[i].task);
}
kfree(gpio_if);
return 0;
}
static struct platform_driver my_key_drv = {
.probe = chip_demo_gpio_probe,
.remove = chip_demo_gpio_remove,
.driver = {
.name = "my_key_drv",
.of_match_table = my_key,
}
};
static int __init gpio_key_drv_init(void) {
int err;
// 注册字符设备
major = register_chrdev(0, "my_button", &button_opr);
if (major < 0) {
printk("register_chrdev failed: %d\n", major);
return major;
}
mybutton_class = class_create(THIS_MODULE, "mybutton_class");
if (IS_ERR(mybutton_class)) {
unregister_chrdev(major, "my_button");
printk("class_create failed\n");
return PTR_ERR(mybutton_class);
}
device_create(mybutton_class, NULL, MKDEV(major, 0), NULL, "my_button");
printk("char device /dev/my_button created, major=%d\n", major);
// 注册 platform 驱动
err = platform_driver_register(&my_key_drv);
if (err) {
device_destroy(mybutton_class, MKDEV(major, 0));
class_destroy(mybutton_class);
unregister_chrdev(major, "my_button");
return err;
}
return 0;
}
static void __exit gpio_key_drv_exit(void) {
platform_driver_unregister(&my_key_drv);
device_destroy(mybutton_class, MKDEV(major, 0));
class_destroy(mybutton_class);
unregister_chrdev(major, "my_button");
printk("char device /dev/my_button removed\n");
}
module_init(gpio_key_drv_init);
module_exit(gpio_key_drv_exit);
MODULE_LICENSE("GPL");
工作队列
中断下半部(timer,tasklet)都是在中断上下文中执行的,无法休眠,如果处理复杂事情的时候,无法休眠,会将CPU资源占满,无法执行用户程序,这样就会使得系统卡顿。为了解决该问题,可以使用线程处理复杂事情。线程可以休眠。(在内核中,使用工作队列,内核会自动创建内核线程)
缺点:当工作队列中前一个work比较耗时,这样就会影响到之后的work工作。
驱动要做的部分:
1、构造work,.func
2、将work放入队列,wake_up唤醒--->schedule_work();
如果处理的事情非常复杂,就不直接使用系统的内核线程,自己创建一个内核线程单独处理。
container_of() 可以获得结构体的地址,主要采用反推。
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/uaccess.h>
#include <linux/types.h>
#include <linux/device.h>
#include <linux/gpio/consumer.h>
#include <linux/platform_device.h>
#include <linux/of_device.h>
#include <linux/of_gpio.h>
#include <linux/interrupt.h>
#include <linux/gfp.h>
#include <linux/of_irq.h>
#include <linux/poll.h>
#include <linux/timer.h>
#include <linux/workqueue.h>
#define BUF_LEN 128
#define NEXT_POS(x) ((x + 1) % BUF_LEN)
static DECLARE_WAIT_QUEUE_HEAD(gpio_key_wait);
static struct fasync_struct *button_fasync;
static struct class *mybutton_class;
static struct gpio_inf *gpio_if;
static int major;
static int g_key[BUF_LEN];
static int r, w;
struct gpio_inf {
int gpio;
int irq;
int last_val;
struct gpio_desc *gpiod;
enum of_gpio_flags flag;
struct timer_list my_button_timer;
struct tasklet_struct task;
struct work_struct work;
};
static int is_key_buf_empty(void) {
return (r == w);
}
static int is_key_buf_full(void) {
return (r == NEXT_POS(w));
}
static void put_key(int key) {
if (!is_key_buf_full()) {
g_key[w] = key;
w = NEXT_POS(w);
}
}
static int get_key(void) {
int key = 0;
if (!is_key_buf_empty()) {
key = g_key[r];
r = NEXT_POS(r);
}
return key;
}
static void mybutton_keys_timer(struct timer_list *t)
{
int val, key;
struct gpio_inf *gf = from_timer(gf, t, my_button_timer);
if(!gf)
return;
val = gpio_get_value(gf->gpio);
if (val != gf->last_val) {
gf->last_val = val; // 更新记录值
return; // 状态不稳定,忽略这次
}
printk("mybutton_keys_timer key %d value%d\n", gf->gpio, val);
key = (gf->gpio << 8) | val;
put_key(key);
wake_up_interruptible(&gpio_key_wait);
kill_fasync(&button_fasync, SIGIO, POLL_IN);
return;
}
static void my_button_tasklet(unsigned long data)
{
int val, key;
struct gpio_inf *gf = (struct gpio_inf *)data;
if(!gf)
return;
val = gpio_get_value(gf->gpio);
if (val != gf->last_val) {
gf->last_val = val;
return;
}
printk("my_button_tasklet key %d value%d\n", gf->gpio, val);
key = (gf->gpio << 8) | val;
put_key(key);
wake_up_interruptible(&gpio_key_wait);
kill_fasync(&button_fasync, SIGIO, POLL_IN);
return;
}
static void my_button_work_func(struct work_struct *work)
{
int val, key;
struct gpio_inf *gf = container_of(work, struct gpio_inf, work);
if(!gf)
return;
val = gpio_get_value(gf->gpio);
if (val != gf->last_val) {
gf->last_val = val;
return;
}
printk("my_button_work_func key %d value%d\n", gf->gpio, val);
key = (gf->gpio << 8) | val;
put_key(key);
return;
}
static irqreturn_t my_key_handler(int irq, void *dev_id)
{
struct gpio_inf * inf = (struct gpio_inf *)dev_id;
//printk("my_key_handler %s %s %d key:%d\n", __FILE__, __FUNCTION__, __LINE__ , inf->gpio);
tasklet_schedule(&inf->task);
mod_timer(&inf->my_button_timer, jiffies + HZ/50);
schedule_work(&inf->work);
return IRQ_HANDLED;
}
static ssize_t gpio_button_read(struct file *file, char __user *buf, size_t size, loff_t *off) {
int err, key;
//printk("%s %s %d\n", __FILE__, __FUNCTION__, __LINE__);
if(is_key_buf_empty() && (file->f_flags & O_NONBLOCK))
return -EAGAIN;
wait_event_interruptible(gpio_key_wait, !is_key_buf_empty());
key = get_key();
err = copy_to_user(buf, &key, 4);
return 4;
}
static unsigned int gpio_button_poll(struct file *fp, poll_table *wait) {
//printk("%s %s %d\n", __FILE__, __FUNCTION__, __LINE__);
poll_wait(fp, &gpio_key_wait, wait);
return is_key_buf_empty() ? 0 : POLLIN | POLLRDNORM;
}
static int gpio_button_fasync(int fd, struct file *file, int on)
{
//printk("%s %s %d\n" , __FILE__ , __FUNCTION__ , __LINE__);
if(fasync_helper(fd, file, on , &button_fasync) >= 0)
return 0;
else
return -EIO;
}
static struct file_operations button_opr = {
.owner = THIS_MODULE,
.read = gpio_button_read,
.poll = gpio_button_poll,
.fasync = gpio_button_fasync,
};
static const struct of_device_id my_key[] = {
{ .compatible = "my,mybutton" },
{},
};
MODULE_DEVICE_TABLE(of, my_key);
static int chip_demo_gpio_probe(struct platform_device *pdev) {
int count, i, err;
struct device_node *node;
enum of_gpio_flags flag;
printk("%s %s %d\n", __FILE__, __FUNCTION__, __LINE__);
node = pdev->dev.of_node;
count = of_gpio_count(node);
if (count <= 0) {
dev_err(&pdev->dev, "Invalid GPIO count: %d\n", count);
return -EINVAL;
}
gpio_if = kzalloc(count * sizeof(struct gpio_inf), GFP_KERNEL);
if (!gpio_if) {
dev_err(&pdev->dev, "Failed to allocate memory\n");
return -ENOMEM;
}
for (i = 0; i < count; i++) {
gpio_if[i].gpio = of_get_gpio_flags(node, i, &flag);
gpio_if[i].irq = gpio_to_irq(gpio_if[i].gpio);
gpio_if[i].gpiod = gpio_to_desc(gpio_if[i].gpio);
gpio_if[i].flag = flag & OF_GPIO_ACTIVE_LOW;
gpio_if[i].last_val = gpio_get_value(gpio_if[i].gpio);
err = request_irq(gpio_if[i].irq, my_key_handler,
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
"my_key", &gpio_if[i]);
if (err) {
printk("request_irq %d failed\n", gpio_if[i].irq);
}
timer_setup(&gpio_if[i].my_button_timer, mybutton_keys_timer , 0);
gpio_if[i].my_button_timer.expires = ~0;
add_timer(&gpio_if[i].my_button_timer);
tasklet_init(&gpio_if[i].task, my_button_tasklet, (unsigned long)&gpio_if[i]);
INIT_WORK(&gpio_if[i].work, my_button_work_func);
}
return 0;
}
static int chip_demo_gpio_remove(struct platform_device *pdev) {
int count, i;
struct device_node *node = pdev->dev.of_node;
printk("%s %s %d\n", __FILE__, __FUNCTION__, __LINE__);
count = of_gpio_count(node);
for (i = 0; i < count; i++) {
del_timer(&gpio_if[i].my_button_timer);
free_irq(gpio_if[i].irq, &gpio_if[i]);
tasklet_kill(&gpio_if[i].task);
}
kfree(gpio_if);
return 0;
}
static struct platform_driver my_key_drv = {
.probe = chip_demo_gpio_probe,
.remove = chip_demo_gpio_remove,
.driver = {
.name = "my_key_drv",
.of_match_table = my_key,
}
};
static int __init gpio_key_drv_init(void) {
int err;
// 注册字符设备
major = register_chrdev(0, "my_button", &button_opr);
if (major < 0) {
printk("register_chrdev failed: %d\n", major);
return major;
}
mybutton_class = class_create(THIS_MODULE, "mybutton_class");
if (IS_ERR(mybutton_class)) {
unregister_chrdev(major, "my_button");
printk("class_create failed\n");
return PTR_ERR(mybutton_class);
}
device_create(mybutton_class, NULL, MKDEV(major, 0), NULL, "my_button");
printk("char device /dev/my_button created, major=%d\n", major);
// 注册 platform 驱动
err = platform_driver_register(&my_key_drv);
if (err) {
device_destroy(mybutton_class, MKDEV(major, 0));
class_destroy(mybutton_class);
unregister_chrdev(major, "my_button");
return err;
}
return 0;
}
static void __exit gpio_key_drv_exit(void) {
platform_driver_unregister(&my_key_drv);
device_destroy(mybutton_class, MKDEV(major, 0));
class_destroy(mybutton_class);
unregister_chrdev(major, "my_button");
printk("char device /dev/my_button removed\n");
}
module_init(gpio_key_drv_init);
module_exit(gpio_key_drv_exit);
MODULE_LICENSE("GPL");
内核线程
中断的线程化处理
主要程序代码
/* 注册irq时,使用request_threaded_irq */
err = request_threaded_irq(gpio_if[i].irq , my_key_handler , my_key_threaded_func ,
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING | IRQF_ONESHOT ,
"my_key" , &gpio_if[i]);
static irqreturn_t my_key_threaded_func(int irq, void *data)
{
int val, key;
struct gpio_inf *gf = (struct gpio_inf *)data ;
val = gpio_get_value(gf->gpio);
printk("my_key_threaded_func key %d value%d\n", gf->gpio, val);
printk("my_key_threaded_func: the process is %s pid %d\n" , current->comm , current->pid);
key = (gf->gpio << 8) | val;
put_key(key);
return IRQ_HANDLED;
}
结果如图所示