Hamilton系统特征线法下的非线性PDE解与爆破时间分析

发布于:2025-07-04 ⋅ 阅读:(20) ⋅ 点赞:(0)

考虑偏微分方程(PDE):
{ u t + ( u x ) 2 = 0 , t > 0 ,   x ∈ R , u ∣ t = 0 = − x 2 . \begin{cases} u_t + (u_x)^2 = 0, & t > 0, \, x \in \mathbb{R}, \\ u|_{t=0} = -x^2. \end{cases} {ut+(ux)2=0,ut=0=x2.t>0,xR,

通过特征线法求解该 PDE。设 p = u x p = u_x p=ux,则 Hamilton 函数为 H ( p ) = p 2 H(p) = p^2 H(p)=p2,其导数为 H ′ ( p ) = 2 p H'(p) = 2p H(p)=2p。特征方程为:
d x d t = H ′ ( p ) = 2 p , d p d t = − H x = 0 , d u d t = p H ′ ( p ) − H ( p ) = p ⋅ 2 p − p 2 = p 2 . \frac{dx}{dt} = H'(p) = 2p, \quad \frac{dp}{dt} = -H_x = 0, \quad \frac{du}{dt} = p H'(p) - H(p) = p \cdot 2p - p^2 = p^2. dtdx=H(p)=2p,dtdp=Hx=0,dtdu=pH(p)H(p)=p2pp2=p2.
d p d t = 0 \frac{dp}{dt} = 0 dtdp=0 p p p 沿特征线为常数。初始条件为 u ( x , 0 ) = − x 2 u(x,0) = -x^2 u(x,0)=x2,故在 t = 0 t = 0 t=0 时, p = u x = − 2 x p = u_x = -2x p=ux=2x。设初始点为 x = x 0 x = x_0 x=x0,则 p = − 2 x 0 p = -2x_0 p=2x0(常数)。

x x x 的方程:
d x d t = 2 p = 2 ( − 2 x 0 ) = − 4 x 0 , \frac{dx}{dt} = 2p = 2(-2x_0) = -4x_0, dtdx=2p=2(2x0)=4x0,
积分得 x = − 4 x 0 t + c x = -4x_0 t + c x=4x0t+c。代入初始条件 x ( 0 ) = x 0 x(0) = x_0 x(0)=x0,有 c = x 0 c = x_0 c=x0,故:
x = x 0 ( 1 − 4 t ) . x = x_0 (1 - 4t). x=x0(14t).

u u u 的方程:
d u d t = p 2 = ( − 2 x 0 ) 2 = 4 x 0 2 , \frac{du}{dt} = p^2 = (-2x_0)^2 = 4x_0^2, dtdu=p2=(2x0)2=4x02,
积分得 u = 4 x 0 2 t + d u = 4x_0^2 t + d u=4x02t+d。代入初始条件 u ( 0 ) = u ( x 0 , 0 ) = − x 0 2 u(0) = u(x_0, 0) = -x_0^2 u(0)=u(x0,0)=x02,有 d = − x 0 2 d = -x_0^2 d=x02,故:
u = 4 x 0 2 t − x 0 2 = x 0 2 ( 4 t − 1 ) . u = 4x_0^2 t - x_0^2 = x_0^2 (4t - 1). u=4x02tx02=x02(4t1).

x = x 0 ( 1 − 4 t ) x = x_0 (1 - 4t) x=x0(14t) 解出 x 0 = x 1 − 4 t x_0 = \frac{x}{1 - 4t} x0=14tx(当 1 − 4 t ≠ 0 1 - 4t \neq 0 14t=0 时),代入 u u u 的表达式:
u ( x , t ) = ( x 1 − 4 t ) 2 ( 4 t − 1 ) = x 2 ( 1 − 4 t ) 2 ⋅ [ − ( 1 − 4 t ) ] = − x 2 1 − 4 t . u(x,t) = \left( \frac{x}{1 - 4t} \right)^2 (4t - 1) = \frac{x^2}{(1 - 4t)^2} \cdot [-(1 - 4t)] = -\frac{x^2}{1 - 4t}. u(x,t)=(14tx)2(4t1)=(14t)2x2[(14t)]=14tx2.

显式解为:
u ( x , t ) = − x 2 1 − 4 t , t ≠ 1 4 . u(x,t) = -\frac{x^2}{1 - 4t}, \quad t \neq \frac{1}{4}. u(x,t)=14tx2,t=41.

t → 1 4 − t \to \frac{1}{4}^- t41 时,分母 1 − 4 t → 0 + 1 - 4t \to 0^+ 14t0+。对任意固定 x ≠ 0 x \neq 0 x=0,有:
lim ⁡ t → 1 4 − u ( x , t ) = lim ⁡ t → 1 4 − ( − x 2 1 − 4 t ) = − ∞ . \lim_{t \to \frac{1}{4}^-} u(x,t) = \lim_{t \to \frac{1}{4}^-} \left( -\frac{x^2}{1 - 4t} \right) = -\infty. t41limu(x,t)=t41lim(14tx2)=.

因此,当 t t t 趋近于 1 4 \frac{1}{4} 41 时,解 u ( x , t ) u(x,t) u(x,t) 在任意 x ≠ 0 x \neq 0 x=0 处发散至 − ∞ -\infty 。解在 t = 1 4 t = \frac{1}{4} t=41 处未定义,且在该时刻解趋于无穷。