1.Tensor的基本概念
在PyTorch中,张量可以看作一个多维数组。标量是零维的张量,向量是一维的张量,矩阵是二维的张量。
2.Tensor的创建
- 直接初始化值
import torch
a = torch.Tensor([[1,2],[3,4]])
print(a)
- 定义tensor的形状创建,此时值未初始化,是随机值
import torch
a = torch.Tensor(2,3)
print(a)
- 值全为1 的tensor
import torch
a = torch.ones(2,3)
print(a)
- 对角线值全为1的tensor,其他位置值为0
import torch
a = torch.eye(2,2)
print(a)
- 值全为0的tensor
import torch
a = torch.zeros(2,2)
print(a)
- 一个和现有tensor形状相同的值全为0的tensor
import torch
a = torch.Tensor(2,3)
b = torch.zeros_like(a)
print('a:\n',a)
print('b:\n',b)
- 一个和现有tensor形状相同的值全为1的tensor
import torch
a = torch.Tensor(2,3)
b = torch.ones_like(a)
print('a:\n',a)
print('b:\n',b)
- 随机值(0~1)
import torch
a = torch.rand(2,3)
print(a)
- 满足正态分布
import torch
#mean:表示均值,std:表示标准差
a = torch.normal(mean=torch.rand(5),std=torch.rand(5))
print(a)
- 满足均匀分布
import torch
# uniform_: 从一个均匀分布-1到1之间随机采样
a = torch.Tensor(2,2).uniform_(-1,1)
print(a)
- 等差序列
import torch
a = torch.arange(0,10,2)
print(a)
- 等间隔的值
import torch
a = torch.linspace(2,10,3)
print(a)
- 乱序
import torch
a = torch.randperm(10)
print(a)
3.Tensor的属性
- 将张量定义在CPU或GPU
import torch
dev1 = torch.device("cpu")
dev2 = torch.device("cuda:0")
a = torch.tensor([2,2],device=dev1)
b = torch.tensor([2,2],device=dev2)
print("a:",a)
print("b:",b)
- 定义类型
import torch
a = torch.tensor([2,2],dtype=torch.float32)
print("a:",a)
- 稀疏的张量:torch.sparse_coo_tensor
import torch
#坐标
i = torch.tensor([[0,1,2],[0,1,2]])
v = torch.tensor([1,2,3])
a = torch.sparse_coo_tensor(i,v,(4,4))
print("a:",a)
- 稀疏张量转稠密张量
import torch
#坐标
i = torch.tensor([[0,1,2],[0,1,2]])
v = torch.tensor([1,2,3])
a = torch.sparse_coo_tensor(i,v,(4,4)).to_dense()
print("a:",a)
4.Tensor的算数运算
- 加法运算
import torch
a = torch.rand(2,3)
b = torch.rand(2,3)
print('初始a:\n',a)
print('b:\n',b)
print("a+b:\n",a + b)
print("a.add(b):\n",a.add(b))
print("torch.add(a,b):\n",torch.add(a,b))
print("a.add_(b):\n",a.add_(b))
print("经过a.add_(b)后的a:\n",a)
- 减法运算
import torch
a = torch.rand(2,3)
b = torch.rand(2,3)
print('初始a:\n',a)
print('b:\n',b)
print("a-b:\n",a - b)
print("a.sub(b):\n",a.sub(b))
print("torch.sub(a,b):\n",torch.sub(a,b))
print("a.sub_(b):\n",a.sub_(b))
print("经过a.sub_(b)后的a:\n",a)
- 乘法运算
import torch
a = torch.rand(2,3)
b = torch.rand(2,3)
print('初始a:\n',a)
print('b:\n',b)
print("a*b:\n",a * b)
print("a.mul(b):\n",a.mul(b))
print("torch.mul(a,b):\n",torch.mul(a,b))
print("a.mul_(b):\n",a.mul_(b))
print("经过a.mul_(b)后的a:\n",a)
- 除法运算
import torch
a = torch.rand(2,3)
b = torch.rand(2,3)
print('初始a:\n',a)
print('b:\n',b)
print("a/b:\n",a / b)
print("a.div(b):\n",a.div(b))
print("torch.div(a,b):\n",torch.div(a,b))
print("a.div_(b):\n",a.div_(b))
print("经过a.div_(b)后的a:\n",a)
- 矩阵运算
import torch
a = torch.ones(2,1)
b = torch.ones(1,2)
print('初始a:\n',a)
print('b:\n',b)
print("a@b:\n",a @ b)
print("a.matmul(b):\n",a.matmul(b))
print("torch.matmul(a,b):\n",torch.matmul(a,b))
print("torch.mm(a,b):\n",torch.mm(a,b))
print("a.mm(b):\n",a.mm(b))
- 高维tensor(两组数据必须保证最后两个维度可以进行矩阵运算)
import torch
a = torch.ones(1,2,3,4)
b = torch.ones(1,2,4,3)
print('初始a:\n',a)
print('b:\n',b)
print("a@b:\n",a @ b)
print("a.matmul(b):\n",a.matmul(b))
print("torch.matmul(a,b):\n",torch.matmul(a,b))
- 指数运算
import torch
a = torch.tensor([1,2])
print('初始a:\n',a)
print("torch.pow(a,3):\n",torch.pow(a,3))
print("a.pow(3):\n",a.pow(3))
print("a**3:\n",a**3)
print("a.pow_(3):\n",a.pow_(3))
print("经过a.pow_(3)后的a:\n",a)
- 关于自然函数e的相关运算
import torch
a = torch.tensor([1,2],dtype=torch.float32)
print('初始a:\n',a)
print("torch.exp(a):\n",torch.exp(a))
print("torch.exp_(a):\n",torch.exp_(a))
print("经过torch.exp_(a)后的a:\n",a)
print("a.exp():\n",a.exp())
print("a.exp_():\n",a.exp_())
print("经过a.exp_()后的a:\n",a)
- 对数运算
import torch
a = torch.tensor([10,2],dtype=torch.float32)
print('初始a:\n',a)
#以e为底
print("torch.log(a):\n",torch.log(a))
print("torch.log_(a):\n",torch.log_(a))
print("经过torch.log_(a)后的a:\n",a)
print("a.log():\n",a.log())
print("a.log_():\n",a.log_())
print("经过a.log_()后的a:\n",a)
- 平方根运算
import torch
a = torch.tensor([10,2],dtype=torch.float32)
print('初始a:\n',a)
#以e为底
print("torch.sqrt(a):\n",torch.sqrt(a))
print("torch.sqrt_(a):\n",torch.sqrt_(a))
print("经过torch.sqrt_(a)后的a:\n",a)
print("a.sqrt():\n",a.sqrt())
print("a.sqrt_():\n",a.sqrt_())
print("经过a.sqrt_()后的a:\n",a)
知识点为听课总结笔记,课程为B站“2025最新整合!公认B站讲解最强【PyTorch】入门到进阶教程,从环境配置到算法原理再到代码实战逐一解读,比自学效果强得多!”:2025最新整合!公认B站讲解最强【PyTorch】入门到进阶教程,从环境配置到算法原理再到代码实战逐一解读,比自学效果强得多!_哔哩哔哩_bilibili