ESP32与树莓派C++、Rust开发实战

发布于:2025-07-06 ⋅ 阅读:(21) ⋅ 点赞:(0)

C++语言在ESP32、树莓派实例

以下是关于C++语言在ESP32、树莓派等硬件设备上的开发实例汇总,涵盖常见应用场景和代码示例。

ESP32开发实例

LED控制(GPIO操作)

使用ESP32的GPIO控制LED灯,示例代码基于Arduino框架:

#include <Arduino.h>
const int ledPin = 2; // ESP32内置LED通常接GPIO2

void setup() {
  pinMode(ledPin, OUTPUT);
}

void loop() {
  digitalWrite(ledPin, HIGH);
  delay(1000);
  digitalWrite(ledPin, LOW);
  delay(1000);
}
WiFi连接与HTTP请求

ESP32连接WiFi并发送HTTP请求:

#include <WiFi.h>
#include <HTTPClient.h>

const char* ssid = "your_SSID";
const char* password = "your_PASSWORD";

void setup() {
  Serial.begin(115200);
  WiFi.begin(ssid, password);
  
  while (WiFi.status() != WL_CONNECTED) {
    delay(500);
    Serial.print(".");
  }
  
  HTTPClient http;
  http.begin("http://example.com/api");
  int httpCode = http.GET();
  if (httpCode > 0) {
    String payload = http.getString();
    Serial.println(payload);
  }
  http.end();
}

void loop() {}

树莓派开发实例

GPIO控制(使用wiringPi)

控制树莓派GPIO引脚输出:

#include <wiringPi.h>
#define LED_PIN 0 // 对应GPIO17

int main() {
  wiringPiSetup();
  pinMode(LED_PIN, OUTPUT);
  
  while (1) {
    digitalWrite(LED_PIN, HIGH);
    delay(1000);
    digitalWrite(LED_PIN, LOW);
    delay(1000);
  }
  return 0;
}
使用libcurl发送HTTP请求

树莓派上使用C++发送HTTP请求:

#include <iostream>
#include <curl/curl.h>

size_t writeCallback(void* contents, size_t size, size_t nmemb, std::string* s) {
  s->append((char*)contents, size * nmemb);
  return size * nmemb;
}

int main() {
  CURL* curl;
  CURLcode res;
  std::string readBuffer;

  curl = curl_easy_init();
  if(curl) {
    curl_easy_setopt(curl, CURLOPT_URL, "http://example.com");
    curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, writeCallback);
    curl_easy_setopt(curl, CURLOPT_WRITEDATA, &readBuffer);
    res = curl_easy_perform(curl);
    curl_easy_cleanup(curl);
    
    std::cout << readBuffer << std::endl;
  }
  return 0;
}
传感器数据读取(I2C接口)

读取BMP280气压传感器数据:

#include <wiringPiI2C.h>
#include <iostream>
#include <cmath>

int main() {
  int fd = wiringPiI2CSetup(0x76); // BMP280默认I2C地址
  if (fd == -1) {
    std::cerr << "I2C初始化失败" << std::endl;
    return -1;
  }
  
  // 校准数据读取和温度/气压计算代码...
  // 此处需根据传感器手册实现具体协议
  
  return 0;
}

跨平台开发实例

串口通信

通用串口通信代码框架:

#include <fcntl.h>
#include <termios.h>
#include <unistd.h>
#include <iostream>

int main() {
  int serialPort = open("/dev/ttyUSB0", O_RDWR);
  if (serialPort < 0) {
    perror("打开串口失败");
    return -1;
  }
  
  struct termios tty;
  tcgetattr(serialPort, &tty);
  cfsetospeed(&tty, B9600);
  cfsetispeed(&tty, B9600);
  tty.c_cflag &= ~PARENB;
  tty.c_cflag &= ~CSTOPB;
  tty.c_cflag &= ~CSIZE;
  tty.c_cflag |= CS8;
  tcsetattr(serialPort, TCSANOW, &tty);
  
  char buf[256];
  write(serialPort, "AT\r\n", 4);
  read(serialPort, &buf, sizeof(buf));
  std::cout << buf << std::endl;
  
  close(serialPort);
  return 0;
}

多线程处理

硬件设备上的多线程应用:

#include <iostream>
#include <thread>
#include <mutex>

std::mutex mtx;

void sensorTask() {
  while (true) {
    mtx.lock();
    std::cout << "读取传感器数据..." << std::endl;
    mtx.unlock();
    std::this_thread::sleep_for(std::chrono::seconds(1));
  }
}

void networkTask() {
  while (true) {
    mtx.lock();
    std::cout << "发送网络请求..." << std::endl;
    mtx.unlock();
    std::this_thread::sleep_for(std::chrono::seconds(2));
  }
}

int main() {
  std::thread t1(sensorTask);
  std::thread t2(networkTask);
  t1.join();
  t2.join();
  return 0;
}

环境传感器数据采集与MQTT传输
ESP32连接DHT22温湿度传感器,采集数据后通过MQTT协议发送至树莓派。树莓派运行Mosquitto MQTT broker,并订阅主题存储数据到SQLite数据库。代码示例(ESP32部分):

use esp_idf_hal::delay::FreeRtos;
use esp_idf_hal::peripherals::Peripherals;
use esp_idf_svc::mqtt::client::*;
use esp_idf_sys as _;

fn main() {
    let peripherals = Peripherals::take().unwrap();
    let mqtt_conf = MqttClientConfiguration::default();
    let mut client = EspMqttClient::new("mqtt://raspberrypi.local", &mqtt_conf).unwrap();
    client.subscribe("sensors/temperature", QoS::AtLeastOnce).unwrap();
}

GPIO状态远程监控系统


ESP32通过WiFi连接树莓派API,定时上报GPIO引脚状态。树莓派运行Flask API接收数据,前端用Echarts实时展示状态变化。树莓派API路由示例:

from flask import Flask, request
app = Flask(__name__)

@app.route('/gpio', methods=['POST'])
def handle_gpio():
    data = request.json
    print(f"Received GPIO state: {data}")
    return "OK"

工业Modbus RTU转TCP网关


ESP32通过RS485接口读取Modbus设备数据,转换为TCP协议转发至树莓派。树莓派运行Node-RED进行协议解析和数据可视化。

硬件配置

ESP32的UART引脚需要连接RS485转换模块(如MAX485)。典型接线方式:

  • ESP32的TX(GPIO17)接MAX485的DI
  • ESP32的RX(GPIO16)接MAX485的RO
  • 控制引脚(如GPIO4)接MAX485的DE/RE
依赖库

Cargo.toml中添加以下依赖:

[dependencies]
embedded-hal = "0.2"
esp32-hal = { version = "0.10", features = ["rt"] }
nb = "1.0"
modbus-rtu = "0.6"
初始化UART和GPIO
use esp32_hal::{
    gpio::GpioPin,
    pac::UART1,
    prelude::*,
    serial::{config::Config, Serial},
};
use modbus_rtu::{Master, MasterContext};

let peripherals = esp32_hal::Peripherals::take().unwrap();
let pins = peripherals.pins;

let mut uart = Serial::new(
    peripherals.UART1,
    Some(GpioPin::new(pins.gpio16)),
    Some(GpioPin::new(pins.gpio17)),
    Config::default().baudrate(9600),
)
.unwrap();

let mut de_re_pin = GpioPin::new(pins.gpio4).into_output();

创建Modbus主站
let mut ctx = MasterContext::new(uart, move |state| {
    de_re_pin.set_state(state.into()).unwrap();
});
let mut master = Master::new(&mut ctx);
读取保持寄存器
let slave_id = 0x01; // 从站地址
let reg_addr = 0x0000; // 寄存器起始地址
let reg_count = 2; // 读取寄存器数量

match master.read_holding_registers(slave_id, reg_addr, reg_count) {
    Ok(data) => {
        println!("Read data: {:?}", data);
    }
    Err(e) => {
        println!("Error: {:?}", e);
    }
}
完整示例代码
use esp32_hal::{
    gpio::GpioPin,
    pac::UART1,
    prelude::*,
    serial::{config::Config, Serial},
};
use modbus_rtu::{Master, MasterContext};

fn main() -> ! {
    let peripherals = esp32_hal::Peripherals::take().unwrap();
    let pins = peripherals.pins;

    let mut uart = Serial::new(
        peripherals.UART1,
        Some(GpioPin::new(pins.gpio16)),
        Some(GpioPin::new(pins.gpio17)),
        Config::default().baudrate(9600),
    )
    .unwrap();

    let mut de_re_pin = GpioPin::new(pins.gpio4).into_output();

    let mut ctx = MasterContext::new(uart, move |state| {
        de_re_pin.set_state(state.into()).unwrap();
    });
    let mut master = Master::new(&mut ctx);

    loop {
        let slave_id = 0x01;
        let reg_addr = 0x0000;
        let reg_count = 2;

        match master.read_holding_registers(slave_id, reg_addr, reg_count) {
            Ok(data) => println!("Data: {:?}", data),
            Err(e) => println!("Error: {:?}", e),
        }

        esp32_hal::delay::FreeRtos::delay_ms(1000);
    }
}

注意事项
  • RS485总线需要终端电阻(通常120Ω)
  • 确保所有设备波特率、数据位、停止位和校验位设置一致
  • 在发送数据前需要激活DE/RE引脚
  • 多设备通信时需注意从站地址唯一性

车载CAN总线数据分析


ESP32连接车辆OBD-II接口,采集CAN总线数据通过WebSocket传输。树莓派运行Wireshark进行协议分析,存储数据到InfluxDB时间序列数据库。

以下是一些使用Rust语言在ESP32上连接车辆OBD-II接口、采集CAN总线数据并通过WebSocket传输的实例和关键方法:

使用esp-idf-hal库初始化CAN控制器
use esp_idf_hal::can::*;
let can_config = Configuration::default();
let can = CanDriver::new(peripherals.can, &can_config).unwrap();
配置CAN过滤器接收OBD-II数据
let filter = Filter::new(FilterType::Standard, 0x7E8, 0x7FF);
can.set_filt