无人机目标检测数据集介绍-14,751张图片 无人机检测 航拍图像

发布于:2025-07-08 ⋅ 阅读:(17) ⋅ 点赞:(0)

在这里插入图片描述

📦 已发布目标检测数据集合集(持续更新)

数据集名称 图像数量 应用方向 博客链接
🔌 电网巡检检测数据集 1600 张 电力设备目标检测 点击查看
🔥 火焰 / 烟雾 / 人检测数据集 10000张 安防监控,多目标检测 点击查看
🚗 高质量车牌识别数据集 10,000 张 交通监控 / 车牌识别 点击查看
🌿 农田杂草航拍检测数据集 1,200 张 农业智能巡检 点击查看
🐑 航拍绵羊检测数据集 1,700 张 畜牧监控 / 航拍检测 点击查看
🌡️ 热成像人体检测数据集 15,000 张 热成像下的行人检测 点击查看
🦺 安全背心检测数据集 3,897 张 工地安全 / PPE识别 点击查看
🚀 火箭检测数据集介绍 12,000 张 智慧医疗 / 养老护理 点击查看
⚡ 绝缘子故障检测数据集 2,100张 无人机巡检/智能运维 点击查看
🚦交通标志检测数据集 1866张 智能驾驶系统/地图数据更新 点击查看
🚧 道路交通标志检测数据集 2,000张 智能地图与导航/交通监控与执法 点击查看
😷 口罩检测数据集 1,600张 疫情防控管理/智能门禁系统 点击查看

📌 每篇文章附带模型指标、训练思路与推理部署建议,欢迎点赞收藏支持~

🚁 无人机实例目标检测数据集介绍

📌 数据集概览

本项目是专注于无人机图像目标检测的计算机视觉数据集,共包含 14,751 张高质量图像,主要用于训练模型在航拍场景下精确识别各类无人机目标。

  • 图像数量:14,751 张
  • 数据集版本:ggdrone2
  • 类别数:1 类
  • 适用任务:目标检测
  • 适配模型:Mask R-CNN、YOLO 等检测模型

包含类别

类别ID 类别名称 描述
0 drone 各类民用/商用无人机

🎯 应用场景

该数据集特别适用于以下领域:

  • 空域安全监控
    自动识别禁飞区域的无人机入侵行为

  • 无人机竞赛分析
    对竞赛中的多无人机进行实时轨迹分割和跟踪

  • 航拍测绘辅助
    在测绘作业中排除干扰无人机目标

  • 反无人机系统
    训练防御系统识别不同型号的无人机

  • 无人机群控制
    支持集群飞行的视觉定位系统开发

🖼 数据特性

数据集包含:
在这里插入图片描述
在这里插入图片描述

  • 多角度拍摄:俯视/平视/仰视等多视角数据
  • 复杂背景:城市/野外等不同环境下的样本
  • 规模优势:15k图像确保模型泛化能力
  • 专业标注:精确到像素级的实例分割标注

🌟 项目功能

界面显示该项目支持:

  • 数据版本管理(ggdrone2)
  • 可视化分析面板
  • 模型训练接口
  • 结果导出功能
  • 协作开发支持

🔗 技术标签

实例分割 无人机检测 航拍图像 Mask-RCNN 计算机视觉 空域安全 智能监控 YOLOv8 航空管制


YOLOv8 训练实战

本教程介绍如何使用 YOLOv8 对目标进行识别与检测。涵盖环境配置、数据准备、训练模型、模型推理和部署等全过程。


📦 1. 环境配置

建议使用 Python 3.8+,并确保支持 CUDA 的 GPU 环境。

# 创建并激活虚拟环境(可选)
python -m venv yolov8_env
source yolov8_env/bin/activate  # Windows 用户使用 yolov8_env\Scripts\activate

安装 YOLOv8 官方库 ultralytics

pip install ultralytics

📁 2. 数据准备

2.1 数据标注格式(YOLO)

每张图像对应一个 .txt 文件,每行代表一个目标,格式如下:

<class_id> <x_center> <y_center> <width> <height>

所有值为相对比例(0~1)。

类别编号从 0 开始。

2.2 文件结构示例

datasets/
├── images/
│   ├── train/
│   └── val/
├── labels/
│   ├── train/
│   └── val/

2.3 创建 data.yaml 配置文件

path: ./datasets
train: images/train
val: images/val

nc: 11
names: ['Bent_Insulator', 'Broken_Insulator_Cap', '', ...]

🚀 3. 模型训练

YOLOv8 提供多种模型:yolov8n, yolov8s, yolov8m, yolov8l, yolov8x。可根据设备性能选择。

yolo detect train \
  model=yolov8s.pt \
  data=./data.yaml \
  imgsz=640 \
  epochs=50 \
  batch=16 \
  project=weed_detection \
  name=yolov8s_crop_weed
参数 类型 默认值 说明
model 字符串 - 指定基础模型架构文件或预训练权重文件路径(.pt/.yaml
data 字符串 - 数据集配置文件路径(YAML 格式),包含训练/验证路径和类别定义
imgsz 整数 640 输入图像的尺寸(像素),推荐正方形尺寸(如 640x640)
epochs 整数 100 训练总轮次,50 表示整个数据集会被迭代 50 次
batch 整数 16 每个批次的样本数量,值越大需要越多显存
project 字符串 - 项目根目录名称,所有输出文件(权重/日志等)将保存在此目录下
name 字符串 - 实验名称,用于在项目目录下创建子文件夹存放本次训练结果

关键参数补充说明:

  1. model=yolov8s.pt

    • 使用预训练的 YOLOv8 small 版本(平衡速度与精度)
    • 可用选项:yolov8n.pt(nano)/yolov8m.pt(medium)/yolov8l.pt(large)
  2. data=./data.yaml

    # 典型 data.yaml 结构示例
    path: ../datasets/weeds
    train: images/train
    val: images/val
    names:
      0: Bent_Insulator
      1: Broken_Insulator_Cap
      2: ...
      3: ...
    

📈 4. 模型验证与测试

4.1 验证模型性能

yolo detect val \
  model=runs/detect/yolov8s_crop_weed/weights/best.pt \
  data=./data.yaml
参数 类型 必需 说明
model 字符串 要验证的模型权重路径(通常为训练生成的 best.ptlast.pt
data 字符串 与训练时相同的 YAML 配置文件路径,需包含验证集路径和类别定义

关键参数详解

  1. model=runs/detect/yolov8s_crop_weed/weights/best.pt

    • 使用训练过程中在验证集表现最好的模型权重(best.pt
    • 替代选项:last.pt(最终epoch的权重)
    • 路径结构说明:
      runs/detect/
      └── [训练任务名称]/
          └── weights/
              ├── best.pt   # 验证指标最优的模型
              └── last.pt   # 最后一个epoch的模型
      
  2. data=./data.yaml

    • 必须与训练时使用的配置文件一致
    • 确保验证集路径正确:
      val: images/val  # 验证集图片路径
      names:
        0: crop
        1: weed
      

常用可选参数

参数 示例值 作用
batch 16 验证时的批次大小
imgsz 640 输入图像尺寸(需与训练一致)
conf 0.25 置信度阈值(0-1)
iou 0.7 NMS的IoU阈值
device 0/cpu 选择计算设备
save_json True 保存结果为JSON文件

典型输出指标

Class     Images  Instances      P      R      mAP50  mAP50-95
all        100       752      0.891  0.867    0.904    0.672
crop       100       412      0.912  0.901    0.927    0.701
weed       100       340      0.870  0.833    0.881    0.643

4.2 推理测试图像

yolo detect predict \
  model=runs/detect/yolov8s_crop_weed/weights/best.pt \
  source=./datasets/images/val \
  save=True

🧠 5. 自定义推理脚本(Python)

from ultralytics import YOLO
import cv2

# 加载模型
model = YOLO('runs/detect/yolov8s_crop_weed/weights/best.pt')

# 推理图像
results = model('test.jpg')

# 可视化并保存结果
results[0].show()
results[0].save(filename='result.jpg')

🛠 6. 部署建议

✅ 本地运行:通过 Python 脚本直接推理。

🌐 Web API:可用 Flask/FastAPI 搭建检测接口。

📦 边缘部署:YOLOv8 支持导出为 ONNX,便于在 Jetson、RKNN 等平台上部署。

导出示例:

yolo export model=best.pt format=onnx

📌 总结流程

阶段 内容
✅ 环境配置 安装 ultralytics, PyTorch 等依赖
✅ 数据准备 标注图片、组织数据集结构、配置 YAML
✅ 模型训练 使用命令行开始训练 YOLOv8 模型
✅ 验证评估 检查模型准确率、mAP 等性能指标
✅ 推理测试 运行模型检测实际图像目标
✅ 高级部署 导出模型,部署到 Web 或边缘设备