Python爬取知乎评论:多线程与异步爬虫的性能优化

发布于:2025-07-11 ⋅ 阅读:(19) ⋅ 点赞:(0)

1. 知乎评论爬取的技术挑战

知乎的评论数据通常采用动态加载(Ajax),这意味着直接使用**<font style="color:rgb(64, 64, 64);background-color:rgb(236, 236, 236);">requests</font>**+**<font style="color:rgb(64, 64, 64);background-color:rgb(236, 236, 236);">BeautifulSoup</font>**无法获取完整数据。此外,知乎还设置了反爬机制,包括:

  • 请求头(Headers)验证(如**<font style="color:rgb(64, 64, 64);background-color:rgb(236, 236, 236);">User-Agent</font>****<font style="color:rgb(64, 64, 64);background-color:rgb(236, 236, 236);">Referer</font>**
  • Cookie/Session 校验(未登录用户只能获取部分数据)
  • 频率限制(频繁请求可能导致IP被封)

因此,我们需要:

  1. 模拟浏览器请求(携带Headers和Cookies)
  2. 解析动态API接口(而非静态HTML)
  3. 优化爬取速度(多线程/异步)

2. 获取知乎评论API分析

(1)查找评论API

打开知乎任意一个问题(如 **<font style="color:rgb(64, 64, 64);background-color:rgb(236, 236, 236);">https://www.zhihu.com/question/xxxxxx</font>**),按**<font style="color:rgb(64, 64, 64);background-color:rgb(236, 236, 236);">F12</font>**进入开发者工具,切换到**<font style="color:rgb(64, 64, 64);background-color:rgb(236, 236, 236);">Network</font>**选项卡,筛选**<font style="color:rgb(64, 64, 64);background-color:rgb(236, 236, 236);">XHR</font>**请求

(2)解析评论数据结构

评论通常嵌套在**<font style="color:rgb(64, 64, 64);background-color:rgb(236, 236, 236);">data</font>**字段中,结构如下:

{
  "data": [
    {
      "content": "评论内容",
      "author": { "name": "用户名" },
      "created_time": 1620000000
    }
  ],
  "paging": { "is_end": false, "next": "下一页URL" }
}

我们需要递归翻页(**<font style="color:rgb(64, 64, 64);background-color:rgb(236, 236, 236);">paging.next</font>**)爬取所有评论。

3. Python爬取知乎评论的三种方式

(1)单线程爬虫(基准测试)

使用**<font style="color:rgb(64, 64, 64);background-color:rgb(236, 236, 236);">requests</font>**库直接请求API,逐页爬取:

import requests
import time

def fetch_comments(question_id, max_pages=5):
    base_url = f"https://www.zhihu.com/api/v4/questions/{question_id}/answers"
    headers = {
        "User-Agent": "Mozilla/5.0",
        "Cookie": "你的Cookie"  # 登录后获取
    }
    comments = []
    for page in range(max_pages):
        url = f"{base_url}?offset={page * 10}&limit=10"
        resp = requests.get(url, headers=headers).json()
        for answer in resp["data"]:
            comments.append(answer["content"])
        time.sleep(1)  # 避免请求过快
    return comments

start_time = time.time()
comments = fetch_comments("12345678")  # 替换为知乎问题ID
print(f"单线程爬取完成,耗时:{time.time() - start_time:.2f}秒")

缺点:逐页请求,速度慢(假设每页1秒,10页需10秒)。

(2)多线程爬虫(ThreadPoolExecutor)

使用**<font style="color:rgb(64, 64, 64);background-color:rgb(236, 236, 236);">concurrent.futures</font>**实现多线程并发请求:

from concurrent.futures import ThreadPoolExecutor

def fetch_page(page, question_id):
    url = f"https://www.zhihu.com/api/v4/questions/{question_id}/answers?offset={page * 10}&limit=10"
    headers = {"User-Agent": "Mozilla/5.0"}
    resp = requests.get(url, headers=headers).json()
    return [answer["content"] for answer in resp["data"]]

def fetch_comments_multi(question_id, max_pages=5, threads=4):
    with ThreadPoolExecutor(max_workers=threads) as executor:
        futures = [executor.submit(fetch_page, page, question_id) for page in range(max_pages)]
        comments = []
        for future in futures:
            comments.extend(future.result())
    return comments

start_time = time.time()
comments = fetch_comments_multi("12345678", threads=4)
print(f"多线程爬取完成,耗时:{time.time() - start_time:.2f}秒")

优化点

  • 线程池控制并发数(避免被封)
  • 比单线程快约3-4倍(4线程爬10页仅需2-3秒)

(3)异步爬虫(Asyncio + aiohttp)

使用**<font style="color:rgb(64, 64, 64);background-color:rgb(236, 236, 236);">aiohttp</font>**实现异步HTTP请求,进一步提高效率:

import aiohttp
import asyncio
import time

# 代理配置
proxyHost = "www.16yun.cn"
proxyPort = "5445"
proxyUser = "16QMSOML"
proxyPass = "280651"

async def fetch_page_async(session, page, question_id):
    url = f"https://www.zhihu.com/api/v4/questions/{question_id}/answers?offset={page * 10}&limit=10"
    headers = {"User-Agent": "Mozilla/5.0"}
    async with session.get(url, headers=headers) as resp:
        data = await resp.json()
        return [answer["content"] for answer in data["data"]]

async def fetch_comments_async(question_id, max_pages=5):
    # 设置代理连接器
    proxy_auth = aiohttp.BasicAuth(proxyUser, proxyPass)
    connector = aiohttp.TCPConnector(
        limit=20,  # 并发连接数限制
        force_close=True,
        enable_cleanup_closed=True,
        proxy=f"http://{proxyHost}:{proxyPort}",
        proxy_auth=proxy_auth
    )
    
    async with aiohttp.ClientSession(connector=connector) as session:
        tasks = [fetch_page_async(session, page, question_id) for page in range(max_pages)]
        comments = await asyncio.gather(*tasks)
    return [item for sublist in comments for item in sublist]

if __name__ == "__main__":
    start_time = time.time()
    comments = asyncio.run(fetch_comments_async("12345678"))  # 替换为知乎问题ID
    print(f"异步爬取完成,耗时:{time.time() - start_time:.2f}秒")
    print(f"共获取 {len(comments)} 条评论")

优势

  • 无GIL限制,比多线程更高效
  • 适合高并发IO密集型任务(如爬虫)

4. 性能对比与优化建议

爬取方式 10页耗时(秒) 适用场景
单线程 ~10 少量数据,简单爬取
多线程(4线程) ~2.5 中等规模,需控制并发
异步(Asyncio) ~1.8 大规模爬取,高并发需求

优化建议

  1. 控制并发数:避免触发反爬(建议10-20并发)。
  2. 随机延迟**<font style="color:rgb(64, 64, 64);background-color:rgb(236, 236, 236);">time.sleep(random.uniform(0.5, 2))</font>** 模拟人类操作。
  3. 代理IP池:防止IP被封(如使用**<font style="color:rgb(64, 64, 64);background-color:rgb(236, 236, 236);">requests</font>**+**<font style="color:rgb(64, 64, 64);background-color:rgb(236, 236, 236);">ProxyPool</font>**)。
  4. 数据存储优化:异步写入数据库(如**<font style="color:rgb(64, 64, 64);background-color:rgb(236, 236, 236);">MongoDB</font>****<font style="color:rgb(64, 64, 64);background-color:rgb(236, 236, 236);">MySQL</font>**)。

网站公告

今日签到

点亮在社区的每一天
去签到