YOLO系列pt导出不同onnx方法

发布于:2025-07-11 ⋅ 阅读:(18) ⋅ 点赞:(0)

YOLO系列pt导出不同onnx方法

1 YOLOv5模型导出

1.1 默认版本导出

直接使用export.py进行导出非dynamic(动态batch)的onnx模型,输出维度为(batch,25200,85)。其中batch为执行export.py时指定;25200为(8080+4040+20*20)*3;85为(x,y,w,h,obj_conf,cls1_conf,cls2_conf…)。

1.2 RKNN版本导出

主要需要更改的位置为:

  1. 取消对于目标框的解码模块,仅获取对应的3个检测头即可(yolo.py)。
    def forward(self, x):
        """Processes input through YOLOv5 layers, altering shape for detection: `x(bs, 3, ny, nx, 85)`."""
        # >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 测试导出符合trt的onnx模型 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
        # z = []  # inference output
        # for i in range(self.nl):
        #     # self.m:针对最后3个输出层之前的卷积1*1conv(ModuleList:1*1 conv)
        #     x[i] = self.m[i](x[i])
        #     bs, _, ny, nx = x[i].shape  # x(bs,255,20,20)
        #     print(f"bs:{bs}, ny:{ny}, nx:{nx}")
        #     x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() # x(bs,3,20,20,85), 分开anchor方便按grid进行遍历

        #     # 在执行export.py时, self.export为False, self.training为False
        #     if not self.training:
        #         # 创建网格(grid offset)和anchor尺度
        #         if self.dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
        #             self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)

        #         if isinstance(self, Segment):  # (boxes + masks)
        #             xy, wh, conf, mask = x[i].split((2, 2, self.nc + 1, self.no - self.nc - 5), 4)
        #             xy = (xy.sigmoid() * 2 + self.grid[i]) * self.stride[i]  # xy
        #             wh = (wh.sigmoid() * 2) ** 2 * self.anchor_grid[i]  # wh
        #             y = torch.cat((xy, wh, conf.sigmoid(), mask), 4)
        #         else:  # Detect (boxes only)
        #             xy, wh, conf = x[i].sigmoid().split((2, 2, self.nc + 1), 4) # 按照最后一维(dim=4)进行拆分: xy([bs, 3, 20, 20, 2]), wh([bs, 3, 20, 20, 2]), conf([bs, 3, 20, 20, 81])
        #             xy = (xy * 2 + self.grid[i]) * self.stride[i]  # xy:相较于当前cell的偏移量; self.grid[i]):当前feature下每个cell左上角坐标, self.stride[i]:映射回原图
        #             wh = (wh * 2) ** 2 * self.anchor_grid[i]  # 尺度缩放: self.anchor_grid[i]:当前feature下每个anchor的模板
        #             y = torch.cat((xy, wh, conf), 4)   # 再组装回(bs,3,20,20,85)-(x,y,w,h,obj_conf,cls_conf1...)
        #         z.append(y.view(bs, self.na * nx * ny, self.no)) # y:[bs, 3, ny, nx, 85] → view 成 [bs, total_boxes, no] 保存到 z, 🎯这也是trt模型的原因

        # '''
        # if self.training:
        #     return x
        # else:
        #     if self.export:
        #         return (torch.cat(z, 1),)  # 导出模式:返回元组(预测输出,)
        #     else:
        #         return (torch.cat(z, 1), x)  # 普通推理模式:返回(预测, 原始特征层输出)
        # '''
        # return x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x)

        # >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 测试导出符合rknn的onnx模型 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
        z = []  # inference output
        for i in range(self.nl):
            x[i] = torch.sigmoid(self.m[i](x[i]))  # conv

        return x
  1. 将type类型进行更改(export.py)。
    # rknn模式: 
    shape = tuple(y[0].shape)
    # trt模式:
    # shape = tuple((y[0] if isinstance(y, tuple) else y).shape)  # model output shape
  1. (可选)为每个输出头分配一个名称,若不分配,会默认按照节点的名称自动进行分配。
    # torch.onnx.export(
    #     model.cpu() if dynamic else model,  # --dynamic only compatible with cpu
    #     im.cpu() if dynamic else im,
    #     f,
    #     verbose=False,
    #     opset_version=opset,
    #     do_constant_folding=True,  # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
    #     input_names=["images"],
    #     output_names=output_names,
    #     dynamic_axes=dynamic or None,   
    # )

    # >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> rknn <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    torch.onnx.export(model.cpu(), im.cpu(), f, verbose=False, opset_version=opset,
                              do_constant_folding=True,
                              input_names=['image'],
                              output_names=['output1', 'output2', 'output3'],
                              dynamic_axes={name: {0: "B"} for name in ['image'] + ['output1', 'output2', 'output3']} if dynamic else None)
                            #   dynamic_axes={name: {0: "B"} for name in ['data'] + ['output1', 'output2', 'output3', 'output4']} if dynamic else None)

tips:

  1. 在进行导出时self.training和self.export均为false。
  2. 由于导出RKNN多头输出版本,去除了解码的模块,所以在训练和推理模式需要把代码进行还原。

网站公告

今日签到

点亮在社区的每一天
去签到