用TensorFlow进行逻辑回归(三)

发布于:2025-07-15 ⋅ 阅读:(12) ⋅ 点赞:(0)

逻辑回归Logistic regression

这个脚本展示如何用TensorFlow求解逻辑回归。 =(×+)y=sigmoid(A×x+b)

我们使用低出生重量数据,特别地:

```

y = 0 or 1 = low birth weight

x = demographic and medical history data

import matplotlib.pyplot as plt

import numpy as np

import tensorflow as tf

import requests

from tensorflow.python.framework import ops

import os.path

import csv

ops.reset_default_graph()

#tf.set_random_seed(42)

np.random.seed(42)

# name of data file

birth_weight_file = 'birth_weight1.csv'

# download data and create data file if file does not exist in current directory

#if not os.path.exists(birth_weight_file):

   

 #   birthdata_url = 'https://github.com/nfmcclure/tensorflow_cookbook/raw/master/01_Introduction/07_Working_with_Data_Sources/birthweight_data/birthweight.dat'

  #  birth_file = requests.get(birthdata_url)

   # birth_data = birth_file.text.split('\r\n')

    #birth_header = birth_data[0].split('\t')

    #birth_data = [[float(x) for x in y.split('\t') if len(x)>=1] for y in birth_data[1:] if len(y)>=1]

    #with open(birth_weight_file, 'w', newline='') as f:

     #   writer = csv.writer(f)

      #  writer.writerow(birth_header)

       # writer.writerows(birth_data)

        #f.close()

# read birth weight data into memory

birth_data = []

with open(birth_weight_file, newline='') as csvfile:

     csv_reader = csv.reader(csvfile)

     birth_header = next(csv_reader)

     for row in csv_reader:

         birth_data.append(row)

birth_data = [[float(x) for x in row] for row in birth_data]

# Pull out target variable

y_vals = np.array([x[0] for x in birth_data])

# Pull out predictor variables (not id, not target, and not birthweight)

x_vals = np.array([x[1:8] for x in birth_data])

# set for reproducible results

seed = 99

np.random.seed(seed)

#tf.set_random_seed(seed)

# Split data into train/test = 80%/20%

train_indices = np.random.choice(len(x_vals), round(len(x_vals)*0.8), replace=False)

test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices)))

x_vals_train = x_vals[train_indices]

x_vals_test = x_vals[test_indices]

y_vals_train = y_vals[train_indices]

y_vals_test = y_vals[test_indices]

# Normalize by column (min-max norm)

def normalize_cols(m, col_min=np.array([None]), col_max=np.array([None])):

    if not col_min[0]:

        col_min = m.min(axis=0)

    if not col_max[0]:

        col_max = m.max(axis=0)

    return (m-col_min) / (col_max - col_min), col_min, col_max

   

x_vals_train, train_min, train_max = np.nan_to_num(normalize_cols(x_vals_train))

x_vals_test, _, _ = np.nan_to_num(normalize_cols(x_vals_test, train_min, train_max))

def model(x,w,b):

    # Declare model operations

    model_output = tf.add(tf.matmul(x, w), b)

    return model_output

def loss1(x,y,w,b):

    # Declare Deming loss function

    loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=model(x,w,b), labels=y))

    return loss

def grad1(x,y,w,b):

    with tf.GradientTape() as tape:

        loss_1 = loss1(x,y,w,b)

return tape.gradient(loss_1,[w,b])

# Declare batch size

# Declare batch size

batch_size = 25

learning_rate = 0.25 # Will not converge with learning rate at 0.4

iterations = 50

# Create variables for linear regression

w1 = tf.Variable(tf.random.normal(shape=[7,1]),tf.float32)

b1 = tf.Variable(tf.random.normal(shape=[1,1]),tf.float32)

optimizer = tf.optimizers.Adam(learning_rate)

# Training loop

# Training loop

loss_vec = []

train_acc = []

test_acc = []

for i in range(5000):

    rand_index = np.random.choice(len(x_vals_train), size=batch_size)

    rand_x = x_vals_train[rand_index]

    rand_y = np.transpose([y_vals_train[rand_index]])

    x=tf.cast(rand_x,tf.float32)

    y=tf.cast(rand_y,tf.float32)

    grads1=grad1(x,y,w1,b1)

    optimizer.apply_gradients(zip(grads1,[w1,b1]))

    #sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})

    temp_loss1 = loss1(x, y,w1,b1).numpy()

    #sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})

    loss_vec.append(temp_loss1)

   

    # Actual Prediction

    #prediction = tf.round(tf.sigmoid(model_output))

    #predictions_correct = tf.cast(tf.equal(prediction, y_target), tf.float32)

    #accuracy = tf.reduce_mean(predictions_correct)

   

   

    prediction1 = tf.round(tf.sigmoid(model(tf.cast(x_vals_train,tf.float32),w1,b1)))

    predictions_correct1 = tf.cast(tf.equal(prediction1, tf.cast(np.transpose([y_vals_train]),tf.float32)), tf.float32)

    temp_acc_train = tf.reduce_mean(predictions_correct1)

    train_acc.append(temp_acc_train)

   

    prediction2 = tf.round(tf.sigmoid(model(tf.cast(x_vals_test,tf.float32),w1,b1)))

    predictions_correct2 = tf.cast(tf.equal(prediction2, tf.cast(np.transpose([y_vals_test]),tf.float32)), tf.float32)

    temp_acc_test=tf.reduce_mean(predictions_correct2)

    test_acc.append(temp_acc_test)

   

    if (i+1)%25==0:

        print('Step #' + str(i+1) + ' A = ' + str(w1.numpy()) + ' b = ' + str(b1.numpy()))

        print('Loss = ' + str(temp_loss1))

%matplotlib inline

# Plot loss over time

plt.plot(loss_vec, 'k-')

plt.title('Cross Entropy Loss per Generation')

plt.xlabel('Generation')

plt.ylabel('Cross Entropy Loss')

plt.show()

# Plot train and test accuracy

plt.plot(train_acc, 'k-', label='Train Set Accuracy')

plt.plot(test_acc, 'r--', label='Test Set Accuracy')

plt.title('Train and Test Accuracy')

plt.xlabel('Generation')

plt.ylabel('Accuracy')

plt.legend(loc='lower right')

plt.show()


网站公告

今日签到

点亮在社区的每一天
去签到