r<-matrix(nrow =10,ncol = 10)
for(i in 1:10){
for(j in 1:10)
r[i,j]<-covBeta[i,j]/(sqrt(covBeta[i,i])*sqrt(covBeta[j,j]))}
r
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [1,] 1.00000000 -0.06053935 0.00914841 -0.28334204 -0.03304466 0.04233039 -0.2883136 [2,] -0.06053935 1.00000000 0.76117459 0.63132117 0.10655347 0.72992413 0.1190900 [3,] 0.00914841 0.76117459 1.00000000 0.69220144 -0.26424621 0.59208828 0.0639940 [4,] -0.28334204 0.63132117 0.69220144 1.00000000 -0.22886901 0.47795015 0.3342855 [5,] -0.03304466 0.10655347 -0.26424621 -0.22886901 1.00000000 -0.02366330 0.1391050 [6,] 0.04233039 0.72992413 0.59208828 0.47795015 -0.02366330 1.00000000 0.0573803 [7,] -0.28831363 0.11908997 0.06399400 0.33428549 0.13910500 0.05738030 1.0000000 [8,] 0.38642324 -0.02895360 -0.13894158 -0.32861926 -0.25030979 0.03728372 -0.5001870 [9,] -0.94875453 -0.08563015 -0.15591018 0.09365267 -0.03454892 -0.09369497 0.1023999 [10,] -0.46881141 0.08848222 -0.06488233 0.22536209 0.09624905 0.09598542 0.5044800 [,8] [,9] [,10] [1,] 0.38642324 -0.94875453 -0.46881141 [2,] -0.02895360 -0.08563015 0.08848222 [3,] -0.13894158 -0.15591018 -0.06488233 [4,] -0.32861926 0.09365267 0.22536209 [5,] -0.25030979 -0.03454892 0.09624905 [6,] 0.03728372 -0.09369497 0.09598542 [7,] -0.50018700 0.10239990 0.50448003 [8,] 1.00000000 -0.19482468 -0.31455212 [9,] -0.19482468 1.00000000 0.28444927 [10,] -0.31455212 0.28444927 1.00000000
install.packages("car")
library(carData)
Anova(lm1,type = "III")
Anova Table (Type III tests) Response: y Sum Sq Df F value Pr(>F) (Intercept) 998 1 0.0066 0.9360967 x1 23314547 1 153.7558 3.969e-11 *** x2 4561056 1 30.0795 1.927e-05 *** x3 2662593 1 17.5594 0.0004121 *** x4 21 1 0.0001 0.9907203 x5 9377500 1 61.8432 1.083e-07 *** x6 89586 1 0.5908 0.4506651 x7 17700 1 0.1167 0.7360055 x8 54295 1 0.3581 0.5559828 x9 17149 1 0.1131 0.7399858 Residuals 3184305 21 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
r<-cor(data3_1)
r
x1 x2 x3 x4 x5 x6 x7 x8 x1 1.0000000 0.22714089 0.6117634 0.21301742 0.7872537 0.69676095 0.6970034 -0.16339935 x2 0.2271409 1.00000000 0.3053681 0.64622334 0.4704869 0.46044177 0.6146573 0.14367061 x3 0.6117634 0.30536809 1.0000000 0.58409947 0.7364894 0.53927001 0.7768628 -0.17839396 x4 0.2130174 0.64622334 0.5840995 1.00000000 0.4881049 0.38109255 0.6513102 0.07004622 x5 0.7872537 0.47048687 0.7364894 0.48810487 1.0000000 0.74689394 0.8141689 -0.10432612 x6 0.6967609 0.46044177 0.5392700 0.38109255 0.7468939 1.00000000 0.7801488 -0.01790576 x7 0.6970034 0.61465733 0.7768628 0.65131022 0.8141689 0.78014879 1.0000000 -0.01989850 x8 -0.1633994 0.14367061 -0.1783940 0.07004622 -0.1043261 -0.01790576 -0.0198985 1.00000000 x9 -0.3755017 0.01334004 -0.3247017 -0.10969051 -0.3743180 -0.49913442 -0.2623661 -0.13009092 y 0.9022762 0.51172104 0.7811370 0.49423568 0.9414255 0.78487674 0.8733947 -0.13026967 x9 y x1 -0.37550174 0.9022762 x2 0.01334004 0.5117210 x3 -0.32470168 0.7811370 x4 -0.10969051 0.4942357 x5 -0.37431801 0.9414255 x6 -0.49913442 0.7848767 x7 -0.26236608 0.8733947 x8 -0.13009092 -0.1302697 x9 1.00000000 -0.3614779 y -0.36147795 1.0000000
install.packages("corpcor")
library(corpcor)
pcor<-cor2pcor(r)
pcor
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [1,] 1.00000000 -0.76117459 -0.63132117 -0.106553471 -0.72992413 -0.1190900 0.02895360 [2,] -0.76117459 1.00000000 -0.69220144 0.264246208 -0.59208828 -0.0639940 0.13894158 [3,] -0.63132117 -0.69220144 1.00000000 0.228869013 -0.47795015 -0.3342855 0.32861926 [4,] -0.10655347 0.26424621 0.22886901 1.000000000 0.02366330 -0.1391050 0.25030979 [5,] -0.72992413 -0.59208828 -0.47795015 0.023663295 1.00000000 -0.0573803 -0.03728372 [6,] -0.11908997 -0.06399400 -0.33428549 -0.139105005 -0.05738030 1.0000000 0.50018700 [7,] 0.02895360 0.13894158 0.32861926 0.250309793 -0.03728372 0.5001870 1.00000000 [8,] 0.08563015 0.15591018 -0.09365267 0.034548922 0.09369497 -0.1023999 0.19482468 [9,] -0.08848222 0.06488233 -0.22536209 -0.096249054 -0.09598542 -0.5044800 0.31455212 [10,] 0.93799379 0.76738247 0.67482266 -0.002568401 0.86400751 0.1654203 0.07434895 [,8] [,9] [,10] [1,] 0.08563015 -0.08848222 0.937993789 [2,] 0.15591018 0.06488233 0.767382474 [3,] -0.09365267 -0.22536209 0.674822662 [4,] 0.03454892 -0.09624905 -0.002568401 [5,] 0.09369497 -0.09598542 0.864007510 [6,] -0.10239990 -0.50448003 0.165420303 [7,] 0.19482468 0.31455212 0.074348952 [8,] 1.00000000 -0.28444927 -0.129479136 [9,] -0.28444927 1.00000000 0.073188710 [10,] -0.12947914 0.07318871 1.000000000