赛事背景:基于《Datawhale AI夏令营-基于带货视频评论的用户洞察挑战赛-CSDN博客》
提升效果
主要的改进:用bert的上下文分词器替代jieba分词器,来提高识别商品的效果。
改进代码如下:
import pandas as pd
import torch
from sklearn.linear_model import SGDClassifier
from sklearn.cluster import KMeans
from sklearn.feature_extraction.text import TfidfVectorizer
from transformers import BertTokenizer
import numpy as np
import os
# 1. 加载数据
video_data = pd.read_csv("origin_videos_data.csv")
comments_data = pd.read_csv("origin_comments_data.csv")
# 2. 取样表条数10条
print(video_data.sample(10))
# 3. 提取表头
print(comments_data.head())
# 4. 合并视频数据的两个字段
video_data["text"] = video_data["video_desc"].fillna("") + " " + video_data["video_tags"].fillna("")
# 5. 加载BERT分词器
tokenizer = BertTokenizer.from_pretrained("/mnt/workspace/bert-base-chinese")
# 6. 商品识别
class BertProductNamePredictor:
def __init__(self):
self.vectorizer = TfidfVectorizer(tokenizer=lambda x: tokenizer.tokenize(x), max_features=100)
self.classifier = SGDClassifier()
def fit(self, texts, labels):
X = self.vectorizer.fit_transform(texts)
self.classifier.fit(X, labels)
def predict(self, texts):
X = self.vectorizer.transform(texts)
return self.classifier.predict(X)
product_name_predictor = BertProductNamePredictor()
product_name_predictor.fit(
video_data[~video_data["product_name"].isnull()]["text"],
video_data[~video_data["product_name"].isnull()]["product_name"]
)
video_data["product_name"] = product_name_predictor.predict(video_data["text"])
# 7. 加载评论数据
print(comments_data.columns)
# 8. 情感分析
class BertSentimentAnalyzer:
def __init__(self):
self.vectorizer = TfidfVectorizer(tokenizer=lambda x: tokenizer.tokenize(x))
self.classifier = SGDClassifier()
def fit(self, texts, labels):
X = self.vectorizer.fit_transform(texts)
self.classifier.fit(X, labels)
def predict(self, texts):
X = self.vectorizer.transform(texts)
return self.classifier.predict(X)
# 对情感分析进行训练和预测
for col in ['sentiment_category', 'user_scenario', 'user_question', 'user_suggestion']:
sentiment_analyzer = BertSentimentAnalyzer()
nonnull_data = comments_data[~comments_data[col].isnull()]
if not nonnull_data.empty:
sentiment_analyzer.fit(
nonnull_data["comment_text"],
nonnull_data[col].astype(int) # 确保标签为整数
)
comments_data[col] = np.nan # 清空列以避免后续赋值时出错
comments_data.loc[nonnull_data.index, col] = sentiment_analyzer.predict(nonnull_data["comment_text"])
# 9. 聚类提取关键词数量
top_n_words = 20
# 10. 情感分析 - 正面聚类
kmeans_positive = KMeans(n_clusters=8, random_state=42)
X_positive = comments_data[comments_data["sentiment_category"].isin([1, 3])]["comment_text"]
if not X_positive.empty:
X_positive_transformed = sentiment_analyzer.vectorizer.transform(X_positive)
if X_positive_transformed.shape[0] > 0: # 确保有样本
kmeans_positive.fit(X_positive_transformed)
positive_labels = kmeans_positive.predict(X_positive_transformed)
comments_data.loc[comments_data["sentiment_category"].isin([1, 3]), "positive_cluster"] = positive_labels
kmeans_top_word_positive = []
feature_names = sentiment_analyzer.vectorizer.get_feature_names_out()
for i in range(kmeans_positive.n_clusters):
top_word_indices = kmeans_positive.cluster_centers_[i].argsort()[::-1][:top_n_words]
top_word = ' '.join([feature_names[idx] for idx in top_word_indices])
kmeans_top_word_positive.append(top_word)
# 这里需要确保 positive_labels 是整数类型
comments_data.loc[comments_data["sentiment_category"].isin([1, 3]), "positive_cluster_theme"] = [kmeans_top_word_positive[int(x)] for x in positive_labels]
# 11. 情感分析 - 负面聚类
kmeans_negative = KMeans(n_clusters=8, random_state=42)
X_negative = comments_data[comments_data["sentiment_category"].isin([2, 3])]["comment_text"]
if not X_negative.empty:
X_negative_transformed = sentiment_analyzer.vectorizer.transform(X_negative)
if X_negative_transformed.shape[0] > 0: # 确保有样本
kmeans_negative.fit(X_negative_transformed)
negative_labels = kmeans_negative.predict(X_negative_transformed)
comments_data.loc[comments_data["sentiment_category"].isin([2, 3]), "negative_cluster"] = negative_labels
kmeans_top_word_negative = []
feature_names = sentiment_analyzer.vectorizer.get_feature_names_out()
for i in range(kmeans_negative.n_clusters):
top_word_indices = kmeans_negative.cluster_centers_[i].argsort()[::-1][:top_n_words]
top_word = ' '.join([feature_names[idx] for idx in top_word_indices])
kmeans_top_word_negative.append(top_word)
# 这里需要确保 negative_labels 是整数类型
comments_data.loc[comments_data["sentiment_category"].isin([2, 3]), "negative_cluster_theme"] = [kmeans_top_word_negative[int(x)] for x in negative_labels]
# 12. 用户场景聚类
kmeans_scenario = KMeans(n_clusters=8, random_state=42)
X_scenario = comments_data[comments_data["user_scenario"] == 1]["comment_text"]
if not X_scenario.empty:
X_scenario_transformed = sentiment_analyzer.vectorizer.transform(X_scenario)
if X_scenario_transformed.shape[0] > 0: # 确保有样本
kmeans_scenario.fit(X_scenario_transformed)
scenario_labels = kmeans_scenario.predict(X_scenario_transformed)
comments_data.loc[comments_data["user_scenario"] == 1, "scenario_cluster"] = scenario_labels
kmeans_top_word_scenario = []
feature_names = sentiment_analyzer.vectorizer.get_feature_names_out()
for i in range(kmeans_scenario.n_clusters):
top_word_indices = kmeans_scenario.cluster_centers_[i].argsort()[::-1][:top_n_words]
top_word = ' '.join([feature_names[idx] for idx in top_word_indices])
kmeans_top_word_scenario.append(top_word)
# 这里需要确保 scenario_labels 是整数类型
comments_data.loc[comments_data["user_scenario"] == 1, "scenario_cluster_theme"] = [kmeans_top_word_scenario[int(x)] for x in scenario_labels]
# 13. 用户问题聚类
kmeans_question = KMeans(n_clusters=8, random_state=42)
X_question = comments_data[comments_data["user_question"] == 1]["comment_text"]
if not X_question.empty:
X_question_transformed = sentiment_analyzer.vectorizer.transform(X_question)
if X_question_transformed.shape[0] > 0: # 确保有样本
kmeans_question.fit(X_question_transformed)
question_labels = kmeans_question.predict(X_question_transformed)
comments_data.loc[comments_data["user_question"] == 1, "question_cluster"] = question_labels
kmeans_top_word_question = []
feature_names = sentiment_analyzer.vectorizer.get_feature_names_out()
for i in range(kmeans_question.n_clusters):
top_word_indices = kmeans_question.cluster_centers_[i].argsort()[::-1][:top_n_words]
top_word = ' '.join([feature_names[idx] for idx in top_word_indices])
kmeans_top_word_question.append(top_word)
# 这里需要确保 question_labels 是整数类型
comments_data.loc[comments_data["user_question"] == 1, "question_cluster_theme"] = [kmeans_top_word_question[int(x)] for x in question_labels]
# 14. 用户建议聚类
kmeans_suggestion = KMeans(n_clusters=8, random_state=42)
X_suggestion = comments_data[comments_data["user_suggestion"] == 1]["comment_text"]
if not X_suggestion.empty:
X_suggestion_transformed = sentiment_analyzer.vectorizer.transform(X_suggestion)
if X_suggestion_transformed.shape[0] > 0: # 确保有样本
kmeans_suggestion.fit(X_suggestion_transformed)
suggestion_labels = kmeans_suggestion.predict(X_suggestion_transformed)
comments_data.loc[comments_data["user_suggestion"] == 1, "suggestion_cluster"] = suggestion_labels
kmeans_top_word_suggestion = []
feature_names = sentiment_analyzer.vectorizer.get_feature_names_out()
for i in range(kmeans_suggestion.n_clusters):
top_word_indices = kmeans_suggestion.cluster_centers_[i].argsort()[::-1][:top_n_words]
top_word = ' '.join([feature_names[idx] for idx in top_word_indices])
kmeans_top_word_suggestion.append(top_word)
# 这里需要确保 suggestion_labels 是整数类型
comments_data.loc[comments_data["user_suggestion"] == 1, "suggestion_cluster_theme"] = [kmeans_top_word_suggestion[int(x)] for x in suggestion_labels]
# 15. 创建提交目录
os.makedirs("submit", exist_ok=True)
# 16. 保存结果
video_data[["video_id", "product_name"]].to_csv("submit/submit_videos.csv", index=None)
comments_data[['video_id', 'comment_id', 'sentiment_category',
'user_scenario', 'user_question', 'user_suggestion',
'positive_cluster_theme', 'negative_cluster_theme',
'scenario_cluster_theme', 'question_cluster_theme',
'suggestion_cluster_theme']].to_csv("submit/submit_comments.csv", index=None)
print("数据已成功保存至 submit 目录!")
!zip -r submit.zip submit/
改进之前需要提前安装bert的模型包:
git lfs install
git clone https://hf-mirror.com/google-bert/bert-base-chinese
安装后目录:
进入bash环境查看
/mnt/workspace/bert-base-chinese
pwd
结果:虽然商品提升了,但是情感分析是0分,继续修改
继续优化
import pandas as pd
import torch
from sklearn.linear_model import SGDClassifier
from sklearn.pipeline import make_pipeline
from sklearn.cluster import KMeans
from sklearn.feature_extraction.text import TfidfVectorizer
from transformers import BertTokenizer
import numpy as np
import os
import jieba
# 1. 加载数据
video_data = pd.read_csv("origin_videos_data.csv")
comments_data = pd.read_csv("origin_comments_data.csv")
# 2. 取样表条数10条
print(video_data.sample(10))
# 3. 提取表头
print(comments_data.head())
# 4. 合并视频数据的两个字段
video_data["text"] = video_data["video_desc"].fillna("") + " " + video_data["video_tags"].fillna("")
# 5. 加载BERT分词器
tokenizer = BertTokenizer.from_pretrained("/mnt/workspace/bert-base-chinese")
# 6. 商品识别
class BertProductNamePredictor:
def __init__(self):
self.vectorizer = TfidfVectorizer(tokenizer=lambda x: tokenizer.tokenize(x), max_features=100)
self.classifier = SGDClassifier()
def fit(self, texts, labels):
X = self.vectorizer.fit_transform(texts)
self.classifier.fit(X, labels)
def predict(self, texts):
X = self.vectorizer.transform(texts)
return self.classifier.predict(X)
product_name_predictor = BertProductNamePredictor()
product_name_predictor.fit(
video_data[~video_data["product_name"].isnull()]["text"],
video_data[~video_data["product_name"].isnull()]["product_name"]
)
video_data["product_name"] = product_name_predictor.predict(video_data["text"])
# 7. 加载评论数据
print(comments_data.columns)
# 8. 情感分析
class BertSentimentAnalyzer:
def __init__(self):
self.vectorizer = TfidfVectorizer(tokenizer=lambda x: tokenizer.tokenize(x))
self.classifier = SGDClassifier()
def fit(self, texts, labels):
X = self.vectorizer.fit_transform(texts)
self.classifier.fit(X, labels)
def predict(self, texts):
X = self.vectorizer.transform(texts)
return self.classifier.predict(X)
# 对情感分析进行训练和预测
for col in ['sentiment_category', 'user_scenario', 'user_question', 'user_suggestion']:
sentiment_analyzer = BertSentimentAnalyzer()
nonnull_data = comments_data[~comments_data[col].isnull()]
if not nonnull_data.empty:
sentiment_analyzer.fit(
nonnull_data["comment_text"],
nonnull_data[col].astype(int) # 确保标签为整数
)
comments_data[col] = np.nan # 清空列以避免后续赋值时出错
comments_data.loc[nonnull_data.index, col] = sentiment_analyzer.predict(nonnull_data["comment_text"])
# 9. 聚类提取关键词数量
top_n_words = 5 # 修改为5,您可以根据需要进行调整
# 10. 情感分析 - 负面聚类
kmeans_predictor = make_pipeline(
TfidfVectorizer(tokenizer=jieba.lcut), KMeans(n_clusters=5, random_state=42)
)
# 训练负面情感的聚类
kmeans_predictor.fit(comments_data[comments_data["sentiment_category"].isin([2, 3])]["comment_text"])
kmeans_cluster_label = kmeans_predictor.predict(comments_data[comments_data["sentiment_category"].isin([2, 3])]["comment_text"])
kmeans_top_word = []
tfidf_vectorizer = kmeans_predictor.named_steps['tfidfvectorizer']
kmeans_model = kmeans_predictor.named_steps['kmeans']
feature_names = tfidf_vectorizer.get_feature_names_out()
cluster_centers = kmeans_model.cluster_centers_
for i in range(kmeans_model.n_clusters):
top_feature_indices = cluster_centers[i].argsort()[::-1]
top_word = ' '.join([feature_names[idx] for idx in top_feature_indices[:top_n_words]])
kmeans_top_word.append(top_word)
comments_data.loc[comments_data["sentiment_category"].isin([2, 3]), "negative_cluster_theme"] = [kmeans_top_word[x] for x in kmeans_cluster_label]
# 11. 情感分析 - 用户场景聚类
kmeans_predictor = make_pipeline(
TfidfVectorizer(tokenizer=jieba.lcut), KMeans(n_clusters=5, random_state=42)
)
kmeans_predictor.fit(comments_data[comments_data["user_scenario"] == 1]["comment_text"])
kmeans_cluster_label = kmeans_predictor.predict(comments_data[comments_data["user_scenario"] == 1]["comment_text"])
kmeans_top_word = []
tfidf_vectorizer = kmeans_predictor.named_steps['tfidfvectorizer']
kmeans_model = kmeans_predictor.named_steps['kmeans']
feature_names = tfidf_vectorizer.get_feature_names_out()
cluster_centers = kmeans_model.cluster_centers_
for i in range(kmeans_model.n_clusters):
top_feature_indices = cluster_centers[i].argsort()[::-1]
top_word = ' '.join([feature_names[idx] for idx in top_feature_indices[:top_n_words]])
kmeans_top_word.append(top_word)
comments_data.loc[comments_data["user_scenario"] == 1, "scenario_cluster_theme"] = [kmeans_top_word[x] for x in kmeans_cluster_label]
# 12. 情感分析 - 用户问题聚类
kmeans_predictor = make_pipeline(
TfidfVectorizer(tokenizer=jieba.lcut), KMeans(n_clusters=5, random_state=42)
)
kmeans_predictor.fit(comments_data[comments_data["user_question"] == 1]["comment_text"])
kmeans_cluster_label = kmeans_predictor.predict(comments_data[comments_data["user_question"] == 1]["comment_text"])
kmeans_top_word = []
tfidf_vectorizer = kmeans_predictor.named_steps['tfidfvectorizer']
kmeans_model = kmeans_predictor.named_steps['kmeans']
feature_names = tfidf_vectorizer.get_feature_names_out()
cluster_centers = kmeans_model.cluster_centers_
for i in range(kmeans_model.n_clusters):
top_feature_indices = cluster_centers[i].argsort()[::-1]
top_word = ' '.join([feature_names[idx] for idx in top_feature_indices[:top_n_words]])
kmeans_top_word.append(top_word)
comments_data.loc[comments_data["user_question"] == 1, "question_cluster_theme"] = [kmeans_top_word[x] for x in kmeans_cluster_label]
# 13. 情感分析 - 用户建议聚类
kmeans_predictor = make_pipeline(
TfidfVectorizer(tokenizer=jieba.lcut), KMeans(n_clusters=5, random_state=42)
)
kmeans_predictor.fit(comments_data[comments_data["user_suggestion"] == 1]["comment_text"])
kmeans_cluster_label = kmeans_predictor.predict(comments_data[comments_data["user_suggestion"] == 1]["comment_text"])
kmeans_top_word = []
tfidf_vectorizer = kmeans_predictor.named_steps['tfidfvectorizer']
kmeans_model = kmeans_predictor.named_steps['kmeans']
feature_names = tfidf_vectorizer.get_feature_names_out()
cluster_centers = kmeans_model.cluster_centers_
for i in range(kmeans_model.n_clusters):
top_feature_indices = cluster_centers[i].argsort()[::-1]
top_word = ' '.join([feature_names[idx] for idx in top_feature_indices[:top_n_words]])
kmeans_top_word.append(top_word)
comments_data.loc[comments_data["user_suggestion"] == 1, "suggestion_cluster_theme"] = [kmeans_top_word[x] for x in kmeans_cluster_label]
# 14. 创建提交目录
os.makedirs("submit", exist_ok=True)
# 15. 保存结果
video_data[["video_id", "product_name"]].to_csv("submit/submit_videos.csv", index=None)
comments_data[['video_id', 'comment_id', 'sentiment_category',
'user_scenario', 'user_question', 'user_suggestion',
'positive_cluster_theme', 'negative_cluster_theme',
'scenario_cluster_theme', 'question_cluster_theme',
'suggestion_cluster_theme']].to_csv("submit/submit_comments.csv", index=None)
print("数据已成功保存至 submit 目录!")
# 16. 创建压缩包
import zipfile
with zipfile.ZipFile("submit.zip", 'w') as zipf:
zipf.write("submit/submit_videos.csv", arcname="submit_videos.csv")
zipf.write("submit/submit_comments.csv", arcname="submit_comments.csv")
print("结果文件已成功压缩为 results.zip!")
虽然没有机会验证结果了,不过在商品识别提高到96以上,也算完成了一个阶段的优化