目录
LM Studio:Qwen3 8b
Docker
Dify
参考博文:
windows个人电脑基于Qwen3和Dify搭建的文档问答智能助手_dify 文档问答-CSDN博客
LM Studio 搭建web server
server测试效果:
import requests
import json
url = "http://192.168.1.8:2000/v1/chat/completions"
# url = "http://127.0.0.1:2000/v1/chat/completions"
headers = {
"Content-Type": "application/json"
}
data = {
"model": "qwen3-8b",
"messages": [
{"role": "system", "content": "Always answer in rhymes. Today is Thursday"},
{"role": "user", "content": "What day is it today?"}
],
"temperature": 0.7,
"max_tokens": -1,
"stream": False
}
response = requests.post(url, headers=headers, data=json.dumps(data))
print(response.status_code)
print(response.text)
flask model server
from flask import Flask, jsonify, request
import requests
app = Flask(__name__)
# 你的 LM Studio 地址
LM_STUDIO_BASE = "http://192.168.1.8:2000"
@app.route("/v1/models", methods=["GET"])
def models():
return jsonify({
"object": "list",
"data": [
{
"id": "qwen3-8b",
"object": "model",
"created": 0,
"owned_by": "lmstudio"
}
]
})
@app.route("/v1/<path:path>", methods=["POST"])
def proxy(path):
resp = requests.post(f"{LM_STUDIO_BASE}/v1/{path}", json=request.json)
return (resp.content, resp.status_code, resp.headers.items())
app.run(host="0.0.0.0", port=3001)
#ok
"http://192.168.1.8:3000/v1/models"
下载安装LM Studio
LM Studio - Discover, download, and run local LLMs
下载模型那一步右边可以skip,
在左下角可以切换 user developer 模式
下载模型
左边选择目录,点击屏幕中间的搜索,然后可以选择模型进行下载了:
windows:
下载 dify代码:
https://github.com/langgenius/dify
copy .env.example .env
docker compose up -d
报错:
Bind for 0.0.0.0:80 failed: port is already allocated
linux:
git clone https://github.com/langgenius/dify.git cd dify/docker cp .env.example .env # 复制环境变量模板 nano .env # 编辑关键配置
启动成功后可在docker客户端看到已经启动的容器
4.Dify创建智能应用
浏览器输入url,注册登录
首次浏览器访问ok
首次访问 404错误:http://localhost/signin
设置完邮箱和用户名之后,访问登录页面ok
404错误:
http://localhost/signin
AI写代码
rust
运行
配置LM studio中的Qwen模型:在设置,模型供应商中安装
OpenAI-API-compatible
下载Qwen3-8B
和embedding模型
pip install modelscope
modelscope download --model Qwen/Qwen3-8B --local_dir Qwen3-8B
modelscope download --model maidalun/bce-embedding-base_v1 --local_dir bce-embedding-base_v1