实现一个动态规划算法
def dynamic_programming_example(n: int) -> List[int]:
"""
动态规划示例:计算斐波那契数列
参数:
- n: 斐波那契数列的项数
返回:
- List[int]: 斐波那契数列前n项
"""
if n <= 0:
return []
elif n == 1:
return [0]
elif n == 2:
return [0, 1]
fib_sequence = [0, 1]
for i in range(2, n):
next_value = fib_sequence[i - 1] + fib_sequence[i - 2]
fib_sequence.append(next_value)
return fib_sequence
实现一个卡尔玛滤波
def kalman_filter_example(measurements: List[float], process_variance: float, measurement_variance: float) -> List[float]:
"""
卡尔曼滤波示例
参数:
- measurements: 测量值列表
- process_variance: 过程噪声方差
- measurement_variance: 测量噪声方差
返回:
- List[float]: 滤波后的值
"""
n = len(measurements)
filtered_values = [0.0] * n
estimate = 0.0
error_estimate = 1.0
for i in range(n):
estimate = estimate
error_estimate += process_variance
kalman_gain = error_estimate / (error_estimate + measurement_variance)
estimate += kalman_gain * (measurements[i] - estimate)
error_estimate *= (1 - kalman_gain)
filtered_values[i] = estimate
return filtered_values
实现一个简单的排序算法
def simple_sort(arr: List[int]) -> List[int]:
"""
简单排序算法:冒泡排序
参数:
- arr: 待排序的整数列表
返回:
- List[int]: 排序后的列表
"""
n = len(arr)
for i in range(n):
for j in range(0, n-i-1):
if arr[j] > arr[j+1]:
arr[j], arr[j+1] = arr[j+1], arr[j]
return arr
实现一个二叉树搜索
def binary_search_tree_insert(root: Dict[str, Any], value: int) -> Dict[str, Any]:
"""
二叉树插入操作
参数:
- root: 二叉树的根节点
- value: 要插入的值
返回:
- Dict[str, Any]: 更新后的二叉树根节点
"""
if root is None:
return {"value": value, "left": None, "right": None}
if value < root["value"]:
root["left"] = binary_search_tree_insert(root.get("left"), value)
else:
root["right"] = binary_search_tree_insert(root.get("right"), value)
return root
实现一个二分查找
def binary_search(arr: List[int], target: int) -> int:
"""
二分查找算法
参数:
- arr: 已排序的整数列表
- target: 要查找的目标值
返回:
- int: 目标值的索引,如果未找到则返回 -1
"""
left, right = 0, len(arr) - 1
while left <= right:
mid = (left + right) // 2
if arr[mid] == target:
return mid
elif arr[mid] < target:
left = mid + 1
else:
right = mid - 1
return -1
实现一个简单的图遍历算法
def depth_first_search(graph: Dict[str, List[str]], start: str, visited: set = None) -> List[str]:
"""
深度优先搜索算法
参数:
- graph: 图的邻接表表示
- start: 起始节点
- visited: 已访问节点集合
返回:
- List[str]: 访问顺序列表
"""
if visited is None:
visited = set()
visited.add(start)
result = [start]
for neighbor in graph.get(start, []):
if neighbor not in visited:
result.extend(depth_first_search(graph, neighbor, visited))
return result
实现一个简单的广度优先搜索算法
def breadth_first_search(graph: Dict[str, List[str]], start: str) -> List[str]:
"""
广度优先搜索算法
参数:
- graph: 图的邻接表表示
- start: 起始节点
返回:
- List[str]: 访问顺序列表
"""
visited = set()
queue = [start]
result = []
while queue:
node = queue.pop(0)
if node not in visited:
visited.add(node)
result.append(node)
queue.extend(neighbor for neighbor in graph.get(node, []) if neighbor not in visited)
return result
实现一个简单的哈希表
def simple_hash_table_insert(hash_table: Dict[int, List[Any]], key: int, value: Any):
"""
简单哈希表插入操作
参数:
- hash_table: 哈希表,键为整数,值为列表
- key: 要插入的键
- value: 要插入的值
"""
if key not in hash_table:
hash_table[key] = []
hash_table[key].append(value)
实现一个简单的哈希表查找操作
def simple_hash_table_search(hash_table: Dict[int, List[Any]], key: int) -> List[Any]:
"""
简单哈希表查找操作
参数:
- hash_table: 哈希表,键为整数,值为列表
- key: 要查找的键
返回:
- List[Any]: 对应键的值列表,如果键不存在则返回空列表
"""
return hash_table.get(key, [])
实现一个简单的命令行界面
def cli():
import argparse
parser = argparse.ArgumentParser(description="处理JSON文件,验证并修正camera_segment中的时间一致性")
parser.add_argument("input_file", help="输入的JSON文件路径")
parser.add_argument("-o", "--output_file", help="输出的JSON文件路径(可选,默认覆盖原文件)")
args = parser.parse_args()
process_json_file(args.input_file, args.output_file)
实现一个简单的二叉树遍历
def binary_tree_traversal(tree: Dict[str, Any], order: str = 'inorder') -> List[Any]:
"""
遍历二叉树
参数:
- tree: 二叉树的字典表示
- order: 遍历顺序 ('inorder', 'preorder', 'postorder')
返回:
- List[Any]: 遍历结果列表
"""
if not tree:
return []
result = []
if order == 'preorder':
result.append(tree['value'])
result.extend(binary_tree_traversal(tree.get('left'), order))
result.extend(binary_tree_traversal(tree.get('right'), order))
elif order == 'inorder':
result.extend(binary_tree_traversal(tree.get('left'), order))
result.append(tree['value'])
result.extend(binary_tree_traversal(tree.get('right'), order))
elif order == 'postorder':
result.extend(binary_tree_traversal(tree.get('left'), order))
result.extend(binary_tree_traversal(tree.get('right'), order))
result.append(tree['value'])
return result
动态规划算法给出注释
def dynamic_programming_algorithm_example():
"""
示例动态规划算法:计算斐波那契数列
"""
def fibonacci(n):
if n <= 0:
return 0
elif n == 1:
return 1
fib = [0] * (n + 1)
fib[1] = 1
for i in range(2, n + 1):
fib[i] = fib[i - 1] + fib[i - 2]
return fib[n]
print(f"Fibonacci(10) = {fibonacci(10)}")
贪心算法给出注释
def greedy_algorithm_example():
"""
示例贪心算法:找零问题
"""
def make_change(coins, amount):
coins.sort(reverse=True)
change = []
for coin in coins:
while amount >= coin:
amount -= coin
change.append(coin)
return change
coins = [25, 10, 5, 1]
amount = 63
print(f"找零 {amount} 的结果: {make_change(coins, amount)}")
分治算法给出注释
def divide_and_conquer_example():
"""
示例分治算法:归并排序
"""
def merge_sort(arr):
if len(arr) <= 1:
return arr
mid = len(arr) // 2
left_half = merge_sort(arr[:mid])
right_half = merge_sort(arr[mid:])
return merge(left_half, right_half)
def merge(left, right):
result = []
i = j = 0
while i < len(left) and j < len(right):
if left[i] < right[j]:
result.append(left[i])
i += 1
else:
result.append(right[j])
j += 1
result.extend(left[i:])
result.extend(right[j:])
return result
arr = [38, 27, 43, 3, 9, 82, 10]
print(f"归并排序结果: {merge_sort(arr)}")
回溯算法给出注释
def backtracking_algorithm_example():
"""
示例回溯算法:八皇后问题
"""
def solve_n_queens(n):
def is_safe(board, row, col):
for i in range(row):
if board[i] == col or \
board[i] - i == col - row or \
board[i] + i == col + row:
return False
return True
def solve(board, row):
if row == n:
solutions.append(board[:])
return
for col in range(n):
if is_safe(board, row, col):
board[row] = col
solve(board, row + 1)
solutions = []
board = [-1] * n
solve(board, 0)
return solutions
n = 4
print(f"八皇后问题的解: {solve_n_queens(n)}")
动态规划算法示例
def dynamic_programming_example():
"""
示例动态规划算法:计算斐波那契数列
"""
def fibonacci(n):
if n <= 0:
return 0
elif n == 1:
return 1
fib = [0] * (n + 1)
fib[1] = 1
for i in range(2, n + 1):
fib[i] = fib[i - 1] + fib[i - 2]
return fib[n]
print(f"Fibonacci(10) = {fibonacci(10)}")
贪心算法示例
def greedy_algorithm_example():
"""
示例贪心算法:找零问题
"""
def make_change(coins, amount):
coins.sort(reverse=True)
change = []
for coin in coins:
while amount >= coin:
amount -= coin
change.append(coin)
return change
coins = [25, 10, 5, 1]
amount = 63
print(f"找零 {amount} 的结果: {make_change(coins, amount)}")