机器人仿真(2)Ubuntu24.04下RTX5090配置IsaacSim与IsaacLab

发布于:2025-07-27 ⋅ 阅读:(11) ⋅ 点赞:(0)

一、前言

博主自从去年开始就一直在关注Isaac Lab和Isaac Sim,但是一直以来由于手头设备只有4060,甚至没有达到最低配置16GB显存要求,因此只能望洋兴叹。今年下定决心下血本购入顶配台式一台,为了让我投入的资金充分转化为生产力,因此最近开始捣鼓配置Isaac Lab和Isaac Sim。由于50系显卡较新,且最新的CUDA版本只能使用Nightly版本的PyTorch,因此配置过程中有许多需要注意的细节,因此我写下了这篇博客用来记录配置过程,既是记录配置过程中遇到的一些问题,也是给各位志同道合的朋友们抛砖引玉,一起用上最先进的GPU并行强化学习环境,共同进步。话不多说,我们正式开始配置吧。

二、电脑配置

名称 型号
操作系统 Ubuntu 24.04 LTS
CPU AMD Ryzen 9 9950X3D 16-Core Processor
运行内存 64GB
GPU NVIDIA GeForce RTX 5090
GPU 驱动 575.64.03
CUDA 版本 12.9

三、配置步骤

电脑需要首先安装Nvidia驱动以及miniconda,已有博客详细阐述了配置过程,本文不再赘述。下面的配置过程主要参考Isaac Lab官方文档的Pip Installation,文档提供了另外一种二进制安装方式,主要区别在于使用的python环境以及Isaac Sim的安装上,下面的安装步骤仅针对Pip Installation,二进制安装请自行尝试。

3.1 创建Conda环境

conda create -n env_isaaclab python=3.10
conda activate env_isaaclab

3.2 安装PyTorch

此处区别于官方文档,截至Sat Jul 26 14:55:10 2025 ,最新的CUDA版本12.9不能使用PyTorch的稳定版2.7.1,因此需要安装Preview (Nightly)版本,安装命令如下:

pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu129

使用如下命令查看当前的PyTorch版本

python -m pip show torch 2>/dev/null | grep "Version" | awk "{print $2}"

我的版本是Version: 2.9.0.dev20250725+cu129,需要记住这个版本号,在下面安装Isaac Lab的时候要用到。

3.3 安装Isaac Sim

pip install 'isaacsim[all,extscache]==4.5.0' --extra-index-url https://pypi.nvidia.com

安装完成后使用如下命令验证Isaac Sim是否安装成功

isaacsim

首次运行isaacsim时会有如下的NVIDIA Software License Agreement,需要手动输入Yes

By installing or using Isaac Sim, I agree to the terms of NVIDIA SOFTWARE LICENSE AGREEMENT (EULA)
in https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-software-license-agreement

Do you accept the EULA? (Yes/No): Yes

如果安装成功,应该有如下界面
在这里插入图片描述

3.4 安装Isaac Lab

首先克隆仓库

git clone git@github.com:isaac-sim/IsaacLab.git

安装依赖项

sudo apt install cmake build-essential

使用编辑器修改IsaacLab/isaaclab.sh,这一步使用到的版本号就是3.2节中最后我们获得的版本号,中间用echo命令打印出来的信息可以不修改,最关键的两点修改:

  1. if [[ "${torch_version}" != "2.7.0+cu128" ]]; then 修改为 if [[ "${torch_version}" != "2.9.0.dev20250725+cu129" ]]; then
  2. ${python_exe} -m pip install torch==2.7.0 torchvision==0.22.0 --index-url https://download.pytorch.org/whl/cu128 修改为 ${python_exe} -m pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu129

原本的安装脚本中会检查torch版本是否是 2.7.0+cu128,但是最新的CUDA版本是12.9,支持12.9的只有Nightly版本,因此需要把版本检查和安装的部分替换为最新的版本。

# pass the arguments
while [[ $# -gt 0 ]]; do
    # read the key
    case "$1" in
        -i|--install)
        # 把原先这一段注释,修改成下面的
            echo "[INFO] Installing extensions inside the Isaac Lab repository..."
            python_exe=$(extract_python_exe)
            # check if pytorch is installed and its version
            # install pytorch with cuda 12.9 for blackwell support
            if ${python_exe} -m pip list 2>/dev/null | grep -q "torch"; then
                torch_version=$(${python_exe} -m pip show torch 2>/dev/null | grep "Version:" | awk '{print $2}')
                echo "[INFO] Found PyTorch version ${torch_version} installed."
                if [[ "${torch_version}" != "2.9.0.dev20250725+cu129" ]]; then	# 替换此处的版本号
                    echo "[INFO] Uninstalling PyTorch version ${torch_version}..."
                    ${python_exe} -m pip uninstall -y torch torchvision torchaudio
                    echo "[INFO] Installing PyTorch 2.9.0 with CUDA 12.9 support..."
                    ${python_exe} -m pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu129
                else
                    echo "[INFO] PyTorch 2.9.0 is already installed."
                fi
            else
                echo "[INFO] Installing PyTorch 2.9.0 with CUDA 12.9 support..."
                ${python_exe} -m pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu129
            fi

安装强化学习/模仿学习框架

./isaaclab.sh -i

创建空场景验证安装

python scripts/tutorials/00_sim/create_empty.py

应当能看到如下输出
在这里插入图片描述
下面我们就可以训练一个机器人了,例如经典的ant环境

./isaaclab.sh -p scripts/reinforcement_learning/rsl_rl/train.py --task=Isaac-Ant-v0
# 如果要提高训练效率,请加上--headless选项,完整命令如下
# ./isaaclab.sh -p scripts/reinforcement_learning/rsl_rl/train.py --task=Isaac-Ant-v0 --headless

机器人仿真(2)-视频:训练ANT环境

终端输出如下

################################################################################
                      Learning iteration 205/1000                       

                       Computation: 82994 steps/s (collection: 1.520s, learning 0.059s)
             Mean action noise std: 0.16
          Mean value_function loss: 0.0247
               Mean surrogate loss: -0.0023
                 Mean entropy loss: -3.9463
                       Mean reward: 102.77
               Mean episode length: 906.04
           Episode_Reward/progress: 6.4252
              Episode_Reward/alive: 0.4708
            Episode_Reward/upright: 0.0927
     Episode_Reward/move_to_target: 0.4684
          Episode_Reward/action_l2: -0.0141
             Episode_Reward/energy: -0.7186
   Episode_Reward/joint_pos_limits: -0.3366
      Episode_Termination/time_out: 2.2812
  Episode_Termination/torso_height: 0.1562
--------------------------------------------------------------------------------
                   Total timesteps: 27000832
                    Iteration time: 1.58s
                      Time elapsed: 00:04:59
                               ETA: 00:19:15

################################################################################
                      Learning iteration 206/1000                       

                       Computation: 82106 steps/s (collection: 1.537s, learning 0.059s)
             Mean action noise std: 0.15
          Mean value_function loss: 0.0313
               Mean surrogate loss: -0.0002
                 Mean entropy loss: -3.9886
                       Mean reward: 105.27
               Mean episode length: 929.74
           Episode_Reward/progress: 6.6413
              Episode_Reward/alive: 0.4845
            Episode_Reward/upright: 0.0961
     Episode_Reward/move_to_target: 0.4757
          Episode_Reward/action_l2: -0.0146
             Episode_Reward/energy: -0.7420
   Episode_Reward/joint_pos_limits: -0.3487
      Episode_Termination/time_out: 2.3438
  Episode_Termination/torso_height: 0.1250
--------------------------------------------------------------------------------
                   Total timesteps: 27131904
                    Iteration time: 1.60s
                      Time elapsed: 00:05:01
                               ETA: 00:19:14

Isaac Lab中还有其他环境,我们还可以训练机器人、机械臂、无人机等对象完成不同的任务,例如我们可以训练Animal四足机器人:

./isaaclab.sh -p scripts/reinforcement_learning/rsl_rl/train.py --task=Isaac-Velocity-Rough-Anymal-C-v0 # 同理可以加上--headless提高效率

机器人仿真(2)-视频:训练Anymal环境

输出如下:

################################################################################
                      Learning iteration 113/1500                       

                       Computation: 24455 steps/s (collection: 3.956s, learning 0.064s)
             Mean action noise std: 0.49
          Mean value_function loss: 0.0140
               Mean surrogate loss: -0.0094
                 Mean entropy loss: 8.4871
                       Mean reward: 6.06
               Mean episode length: 515.96
Episode_Reward/track_lin_vel_xy_exp: 0.3945
Episode_Reward/track_ang_vel_z_exp: 0.2131
       Episode_Reward/lin_vel_z_l2: -0.0302
      Episode_Reward/ang_vel_xy_l2: -0.0485
     Episode_Reward/dof_torques_l2: -0.0438
         Episode_Reward/dof_acc_l2: -0.0953
     Episode_Reward/action_rate_l2: -0.0474
      Episode_Reward/feet_air_time: -0.0075
 Episode_Reward/undesired_contacts: -0.0016
Episode_Reward/flat_orientation_l2: 0.0000
     Episode_Reward/dof_pos_limits: 0.0000
         Curriculum/terrain_levels: 0.2560
Metrics/base_velocity/error_vel_xy: 0.2929
Metrics/base_velocity/error_vel_yaw: 0.2349
      Episode_Termination/time_out: 1.7917
  Episode_Termination/base_contact: 5.0417
--------------------------------------------------------------------------------
                   Total timesteps: 11206656
                    Iteration time: 4.02s
                      Time elapsed: 00:06:54
                               ETA: 01:24:00

################################################################################
                      Learning iteration 114/1500                       

                       Computation: 24878 steps/s (collection: 3.888s, learning 0.064s)
             Mean action noise std: 0.49
          Mean value_function loss: 0.0144
               Mean surrogate loss: -0.0091
                 Mean entropy loss: 8.4738
                       Mean reward: 6.77
               Mean episode length: 546.42
Episode_Reward/track_lin_vel_xy_exp: 0.3991
Episode_Reward/track_ang_vel_z_exp: 0.2165
       Episode_Reward/lin_vel_z_l2: -0.0308
      Episode_Reward/ang_vel_xy_l2: -0.0495
     Episode_Reward/dof_torques_l2: -0.0449
         Episode_Reward/dof_acc_l2: -0.0971
     Episode_Reward/action_rate_l2: -0.0484
      Episode_Reward/feet_air_time: -0.0080
 Episode_Reward/undesired_contacts: -0.0019
Episode_Reward/flat_orientation_l2: 0.0000
     Episode_Reward/dof_pos_limits: 0.0000
         Curriculum/terrain_levels: 0.2656
Metrics/base_velocity/error_vel_xy: 0.3042
Metrics/base_velocity/error_vel_yaw: 0.2438
      Episode_Termination/time_out: 2.0417
  Episode_Termination/base_contact: 5.3750
--------------------------------------------------------------------------------
                   Total timesteps: 11304960
                    Iteration time: 3.95s
                      Time elapsed: 00:06:58
                               ETA: 01:24:00

使用默认参数训练的CPU和内存占用情况如下

GPU占用情况如下(不得不感叹5090的强大)

(env_isaaclab) ➜  Environments nvidia-smi
Sat Jul 26 16:06:58 2025       
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 575.64.03              Driver Version: 575.64.03      CUDA Version: 12.9     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce RTX 5090        Off |   00000000:01:00.0  On |                  N/A |
|  0%   35C    P0            171W /  575W |   17438MiB /  32607MiB |     25%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
                                                                                         
+-----------------------------------------------------------------------------------------+
| Processes:                                                                              |
|  GPU   GI   CI              PID   Type   Process name                        GPU Memory |
|        ID   ID                                                               Usage      |
|=========================================================================================|
|    0   N/A  N/A            2720      G   /usr/lib/xorg/Xorg                      613MiB |
|    0   N/A  N/A            3027      G   /usr/bin/gnome-shell                    187MiB |
|    0   N/A  N/A            3477      G   ...exec/xdg-desktop-portal-gnome          8MiB |
|    0   N/A  N/A            4017      G   /usr/share/code/code                     81MiB |
|    0   N/A  N/A            4845      G   ...ess --variations-seed-version         46MiB |
|    0   N/A  N/A            5289      G   ...ersion=20250725-130039.589000        140MiB |
|    0   N/A  N/A            6131      G   ...OTP --variations-seed-version         63MiB |
|    0   N/A  N/A           21308    C+G   .../envs/env_isaaclab/bin/python      15971MiB |
|    0   N/A  N/A           21987      G   /usr/bin/gnome-system-monitor            18MiB |
+-----------------------------------------------------------------------------------------+

四、总结

50系显卡虽强,但软件生态还在逐步完善,许多库尚未完全适配,配置过程中需要频繁查阅 Nightly 版本、修补依赖、调整脚本。Ubuntu 24.04 虽然新,但也存在一些兼容性问题,比如 Isaac Sim 4.5 目前还不支持 ROS 2 Jazzy,对于想要深度集成机器人中间件的用户来说,需要提前规划。

接下来我还打算继续测试 Isaac Lab 在多智能体协同、规划与博弈任务中的表现,并尝试集成 ROS 2 等模块,构建更加完善的实验平台。希望这篇文章能为正在探索这条技术路线的朋友带来一些参考,也欢迎大家留言交流、一起摸索进步。


网站公告

今日签到

点亮在社区的每一天
去签到