环境配置与TechGPT2配置相同:TechGPT2部署-CSDN博客。
模型下载步骤如下。
sudo apt update
sudo apt install git-lfs -y
git lfs install
学术加速并克隆模型代码库。
source /etc/network_turbo
git clone https://github.com/neukg/TechGPT-3.0.git
禁用 smudge,防止 clone 过程中拉大文件
GIT_LFS_SKIP_SMUDGE=1 git clone https://www.wisemodel.cn/neukg/TechGPT-3.0-Qwen3.git
cd TechGPT-3.0-Qwen3
手动执行拉取(可以重复执行,支持断点续传)
git lfs pull --include="model-*.safetensors"
git lfs pull
运行代码。
import json
import torch
import uvicorn
import threading
import time
from fastapi import FastAPI, Request
from transformers import AutoModelForCausalLM, AutoTokenizer
import requests
app = FastAPI()
# ✅ 模型路径(请替换为你自己的模型路径)
model_name = "/root/autodl-tmp/TechGPT-3.0-Qwen3"
device = "cuda"
print("🔄 加载模型中...")
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
print("✅ 模型加载完成")
@app.post("/question_answer")
async def create_item(request: Request):
json_post_raw = await request.json()
json_post_list = json.loads(json.dumps(json_post_raw))
prompt = json_post_list.get('prompt')
history = json_post_list.get('history') or []
if prompt is None:
return {"response": "Prompt不能为空", "history": []}
system_prompt = [{"role": "system", "content": "You are a helpful assistant."}]
current_prompt = [{"role": "user", "content": prompt}]
messages = system_prompt + history + current_prompt
messages = [m for m in messages if m.get("content") is not None]
try:
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True,
)
except Exception as e:
return {"response": f"Chat模板渲染错误: {str(e)}", "history": history}
model_inputs = tokenizer([text], return_tensors="pt").to(device)
# ✅ 使用思考模式推荐参数进行生成
generated_ids = model.generate(
**model_inputs,
temperature=0.6,
top_p=0.95,
top_k=20,
min_p=0,
max_new_tokens=4096,
do_sample=True # 禁止贪婪解码
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
history = history + current_prompt
history.append({"role": "assistant", "content": response_text})
print("📤 Chat response:", response_text)
return {"response": response_text, "history": history}
def call_api():
time.sleep(5) # 等待服务器启动
print("🚀 开始测试调用 API...")
# ✅ 测试用 API 地址(请替换为实际端口)
url = "http://localhost:your_port/question_answer"
payload = {
"prompt": "市政府决定从2025年7月起,全面推行垃圾分类制度。请将上述通告扩展为一则正式完整的新闻通稿,内容包括背景、措施与意义。",
"history": []
}
response = requests.post(url, json=payload)
if response.status_code == 200:
result = response.json()
print("✅ 模型回答:", result["response"])
else:
print("❌ 调用失败:", response.text)
if __name__ == '__main__':
# ✅ 启动服务器线程(请替换为你的端口号)
server_thread = threading.Thread(
target=lambda: uvicorn.run(app, host="0.0.0.0", port=your_port, log_level="error"),
daemon=True
)
server_thread.start()
# 启动客户端调用
call_api()