FPGA高端项目:图像采集+Aurora 8B10B+UDP图传架构,基于GTP高速收发器的光口转网口,提供4套工程源码和技术支持

发布于:2025-08-08 ⋅ 阅读:(18) ⋅ 点赞:(0)


FPGA高端项目:图像采集+Aurora 8B10B+UDP图传架构,基于GTP高速收发器的光口转网口,提供4套工程源码和技术支持

FPGA高端项目:图像采集+Aurora 8B10B+UDP图传架构

1、前言

Aurora 8B10B是啥?

Aurora 8B10B 是由Xilinx(现AMD)开发的轻量级链路层协议,用于FPGA间的高速点对点串行通信。它基于8B/10B编码方案,提供简化的数据封装和流控制机制,主要应用于需要低延迟、高可靠性传输的场景;
Aurora 8B10B核心作用如下:
1、高速数据传输:通过SerDes收发器实现Gbps级数据传输
2、简化通信协议:仅需基本流控制,无需复杂协议栈
3、可靠传输:内置CRC校验和错误检测机制
4、灵活扩展:支持通道绑定(多通道聚合)
Aurora 8B10B主要工程应用如下:
在这里插入图片描述
博主之前用Xilinx GTP收发器实现过Aurora 8B10B编解码,本博客用的则是Xilinx的标准集成Aurora 8B10B IP核,这两种方法都能实现Aurora 8B10B编解码,区别如下:
Xilinx GTP收发器 vs 标准集成Aurora 8B10B IP核对比如下:
1、用户数据接口不同;
GTP收发器实现过Aurora 8B10B用户数据接口为并行数据;
标准集成Aurora 8B10B IP核用户数据接口为AXI4-Stream流数据;
2、数据对齐不同
GTP收发器实现过Aurora 8B10B输出的数据没有对齐,需要用户自己写逻辑电路对齐;
标准集成Aurora 8B10B IP核输出的数据是经过内部处理后的对齐数据,用户无需自己写逻辑电路对齐;
3、设计难度不同
GTP收发器实现过Aurora 8B10B设计难度较大,需要对GTP高速收发器链路层和物理层有深刻理解,比如PCS和PMA;GTP预留的很多接口直接和底层协议挂钩,无论是配置难度还是使用难度都很大,对设计者技术要求较高;
标准集成Aurora 8B10B IP核则简单很多,无需理解高速收发器链路层和物理层,无论是配置难度还是使用难度都很小,对设计者技术要求较低;

工程概述

本设计使用Xilinx Artix7系列FPGA为平台,基于GTP高速收发器实现Aurora 8B10B图像视频传输传输,旨在为读者提供一套精简版的、基于Aurora 8B10B编解码的图像视频收发架构;

视频输入源有多种,一种是板载的HDMI输入接口,另一种是传统摄像头,包括OV7725、OV5640和AR0135;如果你的FPGA开发板没有视频输入接口,或者你的手里没有摄像头时,可以使用FPGA逻辑实现的动态彩条模拟输入视频,代码里通过parametr参数选择视频源,默认不使用动态彩条;FPGA首先对摄像头进行i2c初始化配置,然后采集摄像头视频;然后采集视频送入Xilinx官方的Video In To AXI4-Stream IP核实现Native视频转换到AXI4-Stream视频流;然后AXI4-Stream视频流再送入纯verilog代码实现的AXIS视频流重组模块实现信号重组,因为Aurora 8B10B发送接口不带tuser信号,所以需要将tuser嵌入到数据流中传输;然后视频流送入Xilinx官方的Aurora 8B10B IP核实现8B10B数据编码,数据以高速差分信号输出,经板载的SFP光口进行回环传输;经SFP-RX接口输入高速差分信号再进入Xilinx官方的Aurora 8B10B IP核实现8B10B数据解码,输出AXI4-Stream视频流;AXI4-Stream视频流再送入纯verilog代码实现的AXIS视频流重组模块实现信号恢复,因为Aurora 8B10B接收接口不带tuser信号,所以需要在嵌入数据中的tuser恢复出来;然后AXI4-Stream视频流送入本博主自研的纯verilog实现的、AXI4-Stream接口的图像写缓存模块,实现视频写入DDR缓存操作;然后使用Native视频流读缓存方案将视频从DDR中读出来;读出的视频再送入纯verilog代码实现的UDP视频组包发送模块,将视频加上包头和其他控制信息;然后组包的视频送入UDP协议栈进行以太网帧组帧;UDP协议栈输出的MAC数据经过FIFO组进行数据缓冲;MAC数据再送入Xilinx官方的Tri Mode Ethernet MAC IP核实现AXIS数据到RGMII数据转换;再经过板载的PHY网络芯片实现物理层功能,将RGMII数据转换为差分数据;再经过板载的RJ45网口,用网线传输到电脑端;电脑端使用QT上位机接收UDP网络视频并显示出来;针对市场主流需求,本博客设计并提供4套工程源码,具体如下:
在这里插入图片描述
现对上述4套工程源码做如下解释,方便读者理解:

工程源码1

开发板FPGA型号为Xilinx–Artix7–xc7a35tfgg484-2;输入视频为OV5640摄像头或者动态彩条,默认使用OV5640;FPGA首先使用纯Verilog实现的i2c总线对摄像头进行初始化配置,分辨率配置为1280x720@30Hz;然后采集输入视频,将输入的两个时钟传输一个RGB565像素的视频采集为一个时钟传输一个RGB888像素的视频;然后采集视频送入Xilinx官方的Video In To AXI4-Stream IP核实现Native视频转换到AXI4-Stream视频流;然后AXI4-Stream视频流再送入纯verilog代码实现的AXIS视频流重组模块实现信号重组,因为Aurora 8B10B发送接口不带tuser信号,所以需要将tuser嵌入到数据流中传输;然后视频流送入Xilinx官方的Aurora 8B10B IP核实现8B10B数据编码,数据以高速差分信号输出,经板载的SFP光口进行回环传输;经SFP-RX接口输入高速差分信号再进入Xilinx官方的Aurora 8B10B IP核实现8B10B数据解码,输出AXI4-Stream视频流;AXI4-Stream视频流再送入纯verilog代码实现的AXIS视频流重组模块实现信号恢复,因为Aurora 8B10B接收接口不带tuser信号,所以需要在嵌入数据中的tuser恢复出来;然后AXI4-Stream视频流送入本博主自研的纯verilog实现的、AXI4-Stream接口的图像写缓存模块,实现视频写入DDR缓存操作;然后使用Native视频流读缓存方案将视频从DDR中读出来;读出的视频再送入纯verilog代码实现的UDP视频组包发送模块,将视频加上包头和其他控制信息;然后组包的视频送入UDP协议栈进行以太网帧组帧;UDP协议栈输出的MAC数据经过FIFO组进行数据缓冲;MAC数据再送入Xilinx官方的Tri Mode Ethernet MAC IP核实现AXIS数据到RGMII数据转换;再经过板载的YT8531C网络芯片实现物理层功能,将RGMII数据转换为差分数据;再经过板载的RJ45网口,用网线传输到电脑端;电脑端使用QT上位机接收UDP网络视频并显示出来;由此形成Sensor+高速接口+光编码+以太网的高端架构;该工程适用于Xilinx 7系列FPGA做视频采集卡项目;

工程源码2

开发板FPGA型号为Xilinx–Artix7–xc7a35tfgg484-2;输入视频为OV5640摄像头或者动态彩条,默认使用OV5640;FPGA首先使用纯Verilog实现的i2c总线对摄像头进行初始化配置,分辨率配置为1280x720@30Hz;然后采集输入视频,将输入的两个时钟传输一个RGB565像素的视频采集为一个时钟传输一个RGB888像素的视频;然后采集视频送入Xilinx官方的Video In To AXI4-Stream IP核实现Native视频转换到AXI4-Stream视频流;然后AXI4-Stream视频流再送入纯verilog代码实现的AXIS视频流重组模块实现信号重组,因为Aurora 8B10B发送接口不带tuser信号,所以需要将tuser嵌入到数据流中传输;然后视频流送入Xilinx官方的Aurora 8B10B IP核实现8B10B数据编码,数据以高速差分信号输出,经板载的SFP光口进行回环传输;经SFP-RX接口输入高速差分信号再进入Xilinx官方的Aurora 8B10B IP核实现8B10B数据解码,输出AXI4-Stream视频流;AXI4-Stream视频流再送入纯verilog代码实现的AXIS视频流重组模块实现信号恢复,因为Aurora 8B10B接收接口不带tuser信号,所以需要在嵌入数据中的tuser恢复出来;然后AXI4-Stream视频流送入本博主自研的纯verilog实现的、AXI4-Stream接口的图像写缓存模块,实现视频写入DDR缓存操作;然后使用Native视频流读缓存方案将视频从DDR中读出来;读出的视频再送入纯verilog代码实现的UDP视频组包发送模块,将视频加上包头和其他控制信息;然后组包的视频送入UDP协议栈进行以太网帧组帧;UDP协议栈输出的MAC数据经过FIFO组进行数据缓冲;MAC数据再送入Xilinx官方的Tri Mode Ethernet MAC IP核实现AXIS数据到RGMII数据转换;再经过板载的RTL8211E网络芯片实现物理层功能,将RGMII数据转换为差分数据;再经过板载的RJ45网口,用网线传输到电脑端;电脑端使用QT上位机接收UDP网络视频并显示出来;由此形成Sensor+高速接口+光编码+以太网的高端架构;该工程适用于Xilinx 7系列FPGA做视频采集卡项目;

工程源码3

开发板FPGA型号为Xilinx–Artix7–xc7a35tfgg484-2;输入视频为OV5640摄像头或者动态彩条,默认使用OV5640;FPGA首先使用纯Verilog实现的i2c总线对摄像头进行初始化配置,分辨率配置为1280x720@30Hz;然后采集输入视频,将输入的两个时钟传输一个RGB565像素的视频采集为一个时钟传输一个RGB888像素的视频;然后采集视频送入Xilinx官方的Video In To AXI4-Stream IP核实现Native视频转换到AXI4-Stream视频流;然后AXI4-Stream视频流再送入纯verilog代码实现的AXIS视频流重组模块实现信号重组,因为Aurora 8B10B发送接口不带tuser信号,所以需要将tuser嵌入到数据流中传输;然后视频流送入Xilinx官方的Aurora 8B10B IP核实现8B10B数据编码,数据以高速差分信号输出,经板载的SFP光口进行回环传输;经SFP-RX接口输入高速差分信号再进入Xilinx官方的Aurora 8B10B IP核实现8B10B数据解码,输出AXI4-Stream视频流;AXI4-Stream视频流再送入纯verilog代码实现的AXIS视频流重组模块实现信号恢复,因为Aurora 8B10B接收接口不带tuser信号,所以需要在嵌入数据中的tuser恢复出来;然后AXI4-Stream视频流送入本博主自研的纯verilog实现的、AXI4-Stream接口的图像写缓存模块,实现视频写入DDR缓存操作;然后使用Native视频流读缓存方案将视频从DDR中读出来;读出的视频再送入纯verilog代码实现的UDP视频组包发送模块,将视频加上包头和其他控制信息;然后组包的视频送入UDP协议栈进行以太网帧组帧;UDP协议栈输出的MAC数据经过FIFO组进行数据缓冲;MAC数据再送入Xilinx官方的Tri Mode Ethernet MAC IP核实现AXIS数据到RGMII数据转换;再经过板载的KSZ9031网络芯片实现物理层功能,将RGMII数据转换为差分数据;再经过板载的RJ45网口,用网线传输到电脑端;电脑端使用QT上位机接收UDP网络视频并显示出来;由此形成Sensor+高速接口+光编码+以太网的高端架构;该工程适用于Xilinx 7系列FPGA做视频采集卡项目;

工程源码4

开发板FPGA型号为Xilinx–Artix7–xc7a100tfgg484-2;输入视频为OV5640摄像头或者动态彩条,默认使用OV5640;FPGA首先使用纯Verilog实现的i2c总线对摄像头进行初始化配置,分辨率配置为1280x720@30Hz;然后采集输入视频,将输入的两个时钟传输一个RGB565像素的视频采集为一个时钟传输一个RGB888像素的视频;然后采集视频送入Xilinx官方的Video In To AXI4-Stream IP核实现Native视频转换到AXI4-Stream视频流;然后AXI4-Stream视频流再送入纯verilog代码实现的AXIS视频流重组模块实现信号重组,因为Aurora 8B10B发送接口不带tuser信号,所以需要将tuser嵌入到数据流中传输;然后视频流送入Xilinx官方的Aurora 8B10B IP核实现8B10B数据编码,数据以高速差分信号输出,经板载的SFP光口进行回环传输;经SFP-RX接口输入高速差分信号再进入Xilinx官方的Aurora 8B10B IP核实现8B10B数据解码,输出AXI4-Stream视频流;AXI4-Stream视频流再送入纯verilog代码实现的AXIS视频流重组模块实现信号恢复,因为Aurora 8B10B接收接口不带tuser信号,所以需要在嵌入数据中的tuser恢复出来;然后AXI4-Stream视频流送入本博主自研的纯verilog实现的、AXI4-Stream接口的图像写缓存模块,实现视频写入DDR缓存操作;然后使用Native视频流读缓存方案将视频从DDR中读出来;读出的视频再送入纯verilog代码实现的UDP视频组包发送模块,将视频加上包头和其他控制信息;然后组包的视频送入UDP协议栈进行以太网帧组帧;UDP协议栈输出的MAC数据经过FIFO组进行数据缓冲;MAC数据再送入Xilinx官方的Tri Mode Ethernet MAC IP核实现AXIS数据到RGMII数据转换;再经过板载的B50610网络芯片实现物理层功能,将RGMII数据转换为差分数据;再经过板载的RJ45网口,用网线传输到电脑端;电脑端使用QT上位机接收UDP网络视频并显示出来;由此形成Sensor+高速接口+光编码+以太网的高端架构;该工程适用于Xilinx 7系列FPGA做视频采集卡项目;

本博客详细描述了FPGA实现图像采集+Aurora 8B10B光编码+UDP图传架构的设计方案,工程代码可综合编译上板调试,可直接项目移植,适用于在校学生、研究生项目开发,也适用于在职工程师做学习提升,可应用于医疗、军工等行业的高速接口或图像处理领域;
提供完整的、跑通的工程源码和技术支持;
工程源码和技术支持的获取方式放在了文章末尾,请耐心看到最后;

免责声明

本工程及其源码即有自己写的一部分,也有网络公开渠道获取的一部分(包括CSDN、Xilinx官网、Altera官网等等),若大佬们觉得有所冒犯,请私信批评教育;基于此,本工程及其源码仅限于读者或粉丝个人学习和研究,禁止用于商业用途,若由于读者或粉丝自身原因用于商业用途所导致的法律问题,与本博客及博主无关,请谨慎使用。。。

2、相关方案推荐

我已有的所有工程源码总目录----方便你快速找到自己喜欢的项目

其实一直有朋友反馈,说我的博客文章太多了,乱花渐欲迷人,自己看得一头雾水,不方便快速定位找到自己想要的项目,所以本博文置顶,列出我目前已有的所有项目,并给出总目录,每个项目的文章链接,当然,本博文实时更新。。。以下是博客地址:
点击直接前往

我这里已有的 GT 高速接口解决方案

我的主页有FPGA GT 高速接口专栏,该专栏有 GTP 、 GTX 、 GTH 、 GTY 等GT 资源的视频传输例程和PCIE传输例程,其中 GTP基于A7系列FPGA开发板搭建,GTX基于K7或者ZYNQ系列FPGA开发板搭建,GTH基于KU或者V7系列FPGA开发板搭建,GTY基于KU+系列FPGA开发板搭建;以下是专栏地址:
点击直接前往

我这里已有的以太网方案

目前我这里有大量UDP协议的工程源码,包括UDP数据回环,视频传输,AD采集传输等,也有TCP协议的工程,还有RDMA的NIC 10G 25G 100G网卡工程源码,对网络通信有需求的兄弟可以去看看:
直接点击前往
其中千兆TCP协议的工程博客如下:
直接点击前往

本设计的GTP高速收发器配置Aurora 8B10B方案

使用GTP高速收发器配置为Aurora 8B10B模式也可以实现和本设计类似的效果,只不过该方案设计难度更大,需要自己设计数据对齐电路,想挑战自我的读者,可以参考我之前发布的博客,链接如下:
点击直接前往

3、工程详细设计方案

工程设计原理框图

工程设计原理框图如下:
在这里插入图片描述

输入Sensor之–>OV5640摄像头

输入Sensor是本工程的输入设备,其一为OV5640摄像头,此外本博主在工程中还设计了动态彩条模块,彩条由FPGA内部逻辑产生,且是动态移动的,完全可模拟Sensor,输入源选择Sensor还是彩条,通过Sensor模块的顶层参数配置,默认选择Sensor输入;Sensor模块如下:
在这里插入图片描述
SENSOR_TYPE=0;则输出OV5640摄像头采集的视频;
SENSOR_TYPE=1;则输出动态彩条的视频;

OV5640摄像头需要i2c初始化配置,本设计配置为1280x720@30Hz分辨率,本设计提供纯verilog代码实现的i2c模块实现配置功能;此外,OV5640摄像头还需要图像采集模块实现两个时钟输出一个RGB565的视频转换为一个时钟输出一个RGB888视频,本设计提供纯verilog代码实现的图像采集模块实现配置功能;动态彩条则由FPGA内部逻辑实现,由纯verilog代码编写;将OV5640摄像头配置采集和动态彩条进行代码封装,形成helai_OVsensor.v的顶层模块,整个模块代码架构如下:
在这里插入图片描述

Native视频转AXIS流

然后采集视频送入Xilinx官方的Video In To AXI4-Stream IP核实现Native视频转换到AXI4-Stream视频流;如下:
在这里插入图片描述

AXIS视频流重组

然后AXI4-Stream视频流再送入纯verilog代码实现的AXIS视频流重组模块实现信号重组,因为Aurora 8B10B发送接口不带tuser信号,所以需要将tuser嵌入到数据流中传输;将AXIS视频流重组模块直接拖入Block Design中,如下:
在这里插入图片描述

Aurora 8B10B视频传输传输架构

然后视频流送入Xilinx官方的Aurora 8B10B IP核实现8B10B数据编码,数据以高速差分信号输出,经板载的SFP光口进行回环传输;经SFP-RX接口输入高速差分信号再进入Xilinx官方的Aurora 8B10B IP核实现8B10B数据解码,输出AXI4-Stream视频流;本设计基于GTP高速收发器实现Aurora 8B10B图像视频传输,Aurora 8B10B在Block Design中如下:
在这里插入图片描述
Aurora 8B10B图像视频传输架构的核心是Aurora 8B10B IP核的例化和使用,所以本章节我们重点讲解这个IP;

Aurora 8B10B IP核简介

关于Aurora 8B10B IP核介绍最详细的肯定是Xilinx官方的《pg046_Aurora 8B/10B LogiCORE IP Product Guide》,我们以此来解读,《pg046》PDF文档我已放在了资料包里;我用到的开发板FPGA型号为Xilinx–Artix7系列FPGA;带有4路GTP资源,每通道的收发速度为500 Mb/s到6.6 Gb/s之间。本设计使用的Aurora 8B10B IP核基于GTP高速收发器实现物理层和数据链路层;

Aurora 8B10B 基本结构

根据《pg046_Aurora 8B/10B LogiCORE IP Product Guide》,Aurora 8B10B 基本结构如下:
在这里插入图片描述
由上图可知,Aurora 8B10B IP核由四个核心模块构成,协同实现链路初始化、数据编解码及流控制:

通道逻辑(Lane Logic)
功能:驱动每个GT收发器(GTP/GTX/GTH),初始化收发器硬件,处理8B/10B编解码、错误检测(如CRC校验)
关键操作:检测控制字符(如空闲符、时钟补偿符),确保数据对齐

全局逻辑(Global Logic)
功能:管理多通道绑定(Lane Bonding),验证通道同步状态,生成随机空闲字符维持链路活性,监控所有通道的错误(如hard_err硬件错误、soft_err位错误)
错误处理:检测到严重错误时自动复位并重新初始化通道

发送用户接口(TX User Interface)
接口类型:支持AXI4-Stream帧接口(带tlast/tkeep)或流接口(简化无帧控制)
功能:将应用层数据封装为Aurora帧(添加SCP/ECP控制符),插入时钟补偿序列(每10,000字节插入12字节开销)

接收用户接口(RX User Interface)
功能:解析输入数据流,剥离SCP/ECP控制符,恢复原始数据帧并通过AXI4-Stream输出;支持流量控制(如UFC/NFC)
特点:无弹性缓冲,依赖实时流控避免溢出

用户数据接口对比
Aurora 8B10B支持帧接口 (Framing) 流接口 (Streaming),对比如下:
在这里插入图片描述

Aurora 8B10B 发送流程

Aurora 8B10B用户发送数据使用帧接口(AXI4-Stream),包括以下流程:

用户发起传输
应用层置位s_axi_tx_tvalid并输出数据至s_axi_tx_tdata,同时用s_axi_tx_tlast标识帧结束,s_axi_tx_tkeep标记末尾有效字节

IP核组帧
当s_axi_tx_tready与s_axi_tx_tvalid同时有效时,IP核采样数据

组帧规则:
帧首添加2字节SCP(Start Channel Protocol)
帧尾添加2字节ECP(End Channel Protocol)
若数据字节数为奇数,末尾补PAD字符

插入控制序列
在数据间隙插入空闲字符或时钟补偿序列(CC),优先级高于数据传输
发送过程中可通过拉低s_axi_tx_tvalid暂停传输(流控)

串行化输出
数据经GT收发器进行8B/10B编码,转为串行信号通过物理链路发送

使用总结
以上流程为Aurora 8B10B IP核内部实现,开发者只需了解即可,无需关心起具体实现细节,开发者只需把发送数据转换为AXI4-Stream数据流送入Aurora 8B10B用户发送接口即可;

Aurora 8B10B 接收流程

数据解析
GT收发器接收串行数据,进行字对齐和8B/10B解码
通道逻辑检测并剥离SCP、ECP、PAD及空闲字符,提取有效负载

帧恢复与输出
恢复的数据通过AXI4-Stream接口输出:
m_axi_rx_tvalid标识有效数据
m_axi_rx_tlast标识帧结束
m_axi_rx_tkeep标记帧末有效字节(仅当tlast有效时)
无流控信号:接收端无tready,需应用层实时消费数据

错误检测
实时监测编解码错误(置位soft_err)或帧结构错误(如连续SCP,置位frame_err)

使用总结
以上流程为Aurora 8B10B IP核内部实现,开发者只需了解即可,无需关心起具体实现细节,开发者只需把Aurora 8B10B IP核输出的AXI4-Stream数据流送入自己的接收模块即可进行具体分析和处理;

Aurora 8B10B 时钟架构

Aurora 8B10B IP核涉及多时钟域协同,关键时钟信号如下:
在这里插入图片描述
时钟交互要点:
跨时钟域同步:INIT_CLK用于复位逻辑(gt_reset需同步至该时钟域),避免亚稳态
用户时钟生成:USER_CLK由GT收发器的CDR(时钟数据恢复)电路产生,确保与输入数据同步
抖动要求:参考时钟(GT_REFCLK)需满足严格抖动限制(通常<1 ps RMS),否则高线速下链路失锁

Aurora 8B10B IP核调用和使用

Aurora 8B10B IP核调用和使用很简单,通过vivado的UI界面即可完成,如下:
在这里插入图片描述
然后配置如下:
在这里插入图片描述
具体配置要根据自己的项目需求而定,上图只是博主的配置,仅供参考;

AXIS视频流恢复

AXI4-Stream视频流再送入纯verilog代码实现的AXIS视频流重组模块实现信号恢复,因为Aurora 8B10B接收接口不带tuser信号,所以需要在嵌入数据中的tuser恢复出来;将AXIS视频流恢复模块直接拖入Block Design中,如下:
在这里插入图片描述

AXIS视频流写缓存

然后AXI4-Stream视频流送入本博主自研的纯verilog实现的、AXI4-Stream接口的图像写缓存模块,实现视频写入DDR缓存操作;AXIS视频流写缓存模块代码架构如下:
在这里插入图片描述
AXIS视频流写缓存模块配置项如下:
在这里插入图片描述
AXIS视频流写缓存模块配置在Block Design中如下:
在这里插入图片描述

Native视频流读缓存

然后使用本博主常用的FDMA方案将视频从DDR3中读出来,该图像读写方案为开源方案,博主针对网络视频读写特性做了优化修改;Native视频流写缓存模块代码架构如下:FDMA图像缓存架构实现的功能是将输入视频缓存到板载DDR中,由于调用了Xilinx官方的MIG作为DDR控制器,所以FDMA图像缓存架构就是实现用户数据到MIG的桥接作用;架构如下:
在这里插入图片描述
FDMA图像缓存架构由FDMA控制器+FDMA组成;FDMA实际上就是一个AXI4-FULL总线主设备,与MIG对接,MIG配置为AXI4-FULL接口;FDMA控制器实际上就是一个视频读写逻辑,以写视频为例,假设一帧图像的大小为M×N,其中M代表图像宽度,N代表图像高度;FDMA控制器每次写入一行视频数据,即每次向DDR3中写入M个像素,写N次即可完成1帧图像的缓存,本设计只用到了FDMA控制器的读功能,FDMA控制器IP配置如下:
在这里插入图片描述
图中配置只做参考,具体配置以实际工程为准;
FDMA图像缓存架构在Block Design中如下:
在这里插入图片描述

UDP视频组包发送

该方案为开源方案,本博主只是做了简单优化;UDP视频组包发送实现视频数据的组包并通过UDP协议栈发送出去,视频数据发送必须与QT上位机的接受程序一致,上位机定义的UDP帧格式包括帧头个UDP数据,QT上位机接收代码数据帧头定义如下:
在这里插入图片描述
FPGA端的UDP数据组包代码必须与上图的数据帧格式对应,否则QT无法解析,代码中定义了数据组包状态机以及数据帧,如下:
在这里插入图片描述
另外,由于UDP发送是64位数据位宽,而图像像素数据是24bit位宽,所以必须将UDP数据重新组合,以保证像素数据的对齐,这部分是整个工程的难点,也是所有FPGA做UDP数据传输的难点;UDP视频组包发送代码架构如下:
在这里插入图片描述

UDP协议栈

该方案为开源方案;本UDP协议栈使用UDP协议栈网表文件,该协议栈源码目前并不开源,只提供网表文件,虽看不见源码但可正常实现UDP通信,但不影响使用,该协议栈带有用户接口,使得用户无需关心复杂的UDP协议而只需关心简单的用户接口时序即可操作UDP收发,非常简单;协议栈架构如下:
在这里插入图片描述
协议栈性能表现如下:
1:支持 UDP 接收校验和检验功能,暂不支持 UDP 发送校验和生成;
2:支持 IP 首部校验和的生成和校验,同时支持 ICMP 协议中的 PING 功能,可接收并响应同一个子网内部设备的 PING 请求;
3:可自动发起或响应同一个子网内设备的 ARP 请求,ARP 收发完全自适应。ARP 表可保存同一个子网内部256 个 IP 和 MAC 地址对;
4:支持 ARP 超时机制,可检测所需发送数据包的目的 IP 地址是否可达;
5:协议栈发送带宽利用率可达 93%,高发送带宽下,内部仲裁机制保证 PING 和 ARP 功能不受任何影响;
6:发送过程不会造成丢包;
7:提供64bit位宽AXI4-Stream形式的MAC接口,可与Xilinx官方的千兆以太网IP核Tri Mode Ethernet MAC,以及万兆以太网 IP 核 10 Gigabit Ethernet Subsystem、10 Gigabit Ethernet MAC 配合使用;
有了此协议栈,我们无需关心复杂的UDP协议的实现了,直接调用接口即可使用。。。
本UDP协议栈用户接口发送时序如下:
在这里插入图片描述
本UDP协议栈用户接口接收时序如下:
在这里插入图片描述

MAC数据缓冲FIFO组

该方案为开源方案,本博主只是做了简单优化;
这里对代码中用到的数据缓冲FIFO组做如下解释:
由于 UDP IP 协议栈的 AXI-Stream 数据接口位宽为 64bit,而 Tri Mode Ethernet MAC 的 AXI-Stream数据接口位宽为 8bit。因此,要将 UDP IP 协议栈与 Tri Mode Ethernet MAC 之间通过 AXI-Stream 接口互联,需要进行时钟域和数据位宽的转换。实现方案如下图所示:
在这里插入图片描述
收发路径(本设计只用到了发送)都使用了2个AXI-Stream DATA FIFO,通过其中1个FIFO实现异步时钟域的转换,1个FIFO实
现数据缓冲和同步Packet mode功能;由于千兆速率下Tri Mode Ethernet MAC的AXI-Stream数据接口同步时钟信号为125MHz,此时,UDP协议栈64bit的AXI-Stream数据接口同步时钟信号应该为125MHz/(64/8)=15.625MHz,因此,异步
AXI-Stream DATA FIFO两端的时钟分别为125MHz(8bit),15.625MHz(64bit);UDP IP协议栈的AXI-Stream接口经过FIFO时钟域转换后,还需要进行数据数据位宽转换,数据位宽的转换通过AXI4-Stream Data Width Converter完成,在接收路径中,进行 8bit 到 64bit 的转换;在发送路径中,进行 64bit 到 8bit 的转换;MAC数据缓冲FIFO组代码架构如下:
在这里插入图片描述

Tri Mode Ethernet MAC

Tri Mode Ethernet MAC主要是为了适配1G/2.5G Ethernet PCS/PMA or SGMII,因为后者的输入接口是GMII,而Tri Mode Ethernet MAC的输入接口是AXIS,输出接口是GMII,Tri Mode Ethernet MAC配置如下:
在这里插入图片描述
在这里插入图片描述

PHY芯片

本例程提供4套vivado工程源码,分别用到了RTL8211、YT8531C、KSZ9031、B50610等市面上主流的PHY型号,通过这些型号PHY的使用,你将能学会其他型号PHY的使用,因为很多都是兼容的,比如RTL8211兼容YT8531,B50610兼容88E1518等;此外,还提供了PHY的参考原理图,一并放在了资料包中;如下:
在这里插入图片描述

IP地址、端口号的修改

UDP协议栈留出了IP地址、端口号的修改端口供用户自由修改,位置在顶层模块如下:
在这里插入图片描述

UDP视频接收显示QT上位机

该方案为开源方案;仅提供Win10版本的QT上位机,位置如下:
在这里插入图片描述
以Win10版本为例,源码位置如下:
在这里插入图片描述
以Win10版本下,可以点击已经编译好的QT软件直接运行,位置如下:
在这里插入图片描述
QT上位机运行效果如下:
在这里插入图片描述
我们的QT目前仅支持1280x720分辨率的视频抓图显示,但同时预留了1080P接口,对QT开发感兴趣的朋友可以尝试修改代码以适应1080P,因为QT在这里只是验证工具,不是本工程的重点,所以不再过多赘述;

工程源码架构

提供4套工程源码,以工程源码1为例,工程Block Design设计如下:
在这里插入图片描述
提供4套工程源码,以工程源码1为例,综合后的工程源码架构如下:
在这里插入图片描述

4、vivado工程源码1详解–>Artix7–35T,YT8531C做PHY版本

开发板FPGA型号:Artix7–xc7a35tfgg484-2;
FPGA开发环境:Vivado2019.1;
输入:OV5640摄像头或动态彩条,分辨率1280x720@30Hz;
输出:千兆UDP网络视频,分辨率1280x720@60Hz;
光编码方案:Xilinx官方Aurora 8B10B IP核;
回环光口类型:1路SFP光口;
高速收发器类型:GTP,线速率5Gbps;
Aurora 8B10B用户数据位宽:32 bit;
图像缓存方案:DDR3颗粒,单帧缓存;
以太网传输层协议:UDP协议,千兆速率;
以太网MAC层方案:Xilinx官方Tri Mode Ethernet MAC IP核,固定千兆模式;
以太网物理层方案:YT8531C芯片,延时模式,RGMII接口;
实现功能:FPGA实现高速接口转网络视频传输;
工程作用:此工程目的是让读者掌握FPGA实现高速接口转网络视频传输的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
在这里插入图片描述

5、vivado工程源码2详解–>Artix7–35T,RTL8211E做PHY版本

开发板FPGA型号:Artix7–xc7a35tfgg484-2;
FPGA开发环境:Vivado2019.1;
输入:OV5640摄像头或动态彩条,分辨率1280x720@30Hz;
输出:千兆UDP网络视频,分辨率1280x720@60Hz;
光编码方案:Xilinx官方Aurora 8B10B IP核;
回环光口类型:1路SFP光口;
高速收发器类型:GTP,线速率5Gbps;
Aurora 8B10B用户数据位宽:32 bit;
图像缓存方案:DDR3颗粒,单帧缓存;
以太网传输层协议:UDP协议,千兆速率;
以太网MAC层方案:Xilinx官方Tri Mode Ethernet MAC IP核,固定千兆模式;
以太网物理层方案:RTL8211E芯片,延时模式,RGMII接口;
实现功能:FPGA实现高速接口转网络视频传输;
工程作用:此工程目的是让读者掌握FPGA实现高速接口转网络视频传输的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
在这里插入图片描述

6、vivado工程源码3详解–>Artix7–35T,KSZ9031做PHY版本

开发板FPGA型号:Artix7–xc7a35tfgg484-2;
FPGA开发环境:Vivado2019.1;
输入:OV5640摄像头或动态彩条,分辨率1280x720@30Hz;
输出:千兆UDP网络视频,分辨率1280x720@60Hz;
光编码方案:Xilinx官方Aurora 8B10B IP核;
回环光口类型:1路SFP光口;
高速收发器类型:GTP,线速率5Gbps;
Aurora 8B10B用户数据位宽:32 bit;
图像缓存方案:DDR3颗粒,单帧缓存;
以太网传输层协议:UDP协议,千兆速率;
以太网MAC层方案:Xilinx官方Tri Mode Ethernet MAC IP核,固定千兆模式;
以太网物理层方案:KSZ9031芯片,延时模式,RGMII接口;
实现功能:FPGA实现高速接口转网络视频传输;
工程作用:此工程目的是让读者掌握FPGA实现高速接口转网络视频传输的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
在这里插入图片描述

7、vivado工程源码4详解–>Artix7–100T,B50610做PHY版本

开发板FPGA型号:Artix7–xc7a100tfgg484-2;
FPGA开发环境:Vivado2019.1;
输入:OV5640摄像头或动态彩条,分辨率1280x720@30Hz;
输出:千兆UDP网络视频,分辨率1280x720@60Hz;
光编码方案:Xilinx官方Aurora 8B10B IP核;
回环光口类型:1路SFP光口;
高速收发器类型:GTP,线速率5Gbps;
Aurora 8B10B用户数据位宽:32 bit;
图像缓存方案:DDR3颗粒,单帧缓存;
以太网传输层协议:UDP协议,千兆速率;
以太网MAC层方案:Xilinx官方Tri Mode Ethernet MAC IP核,固定千兆模式;
以太网物理层方案:B50610芯片,延时模式,RGMII接口;
实现功能:FPGA实现高速接口转网络视频传输;
工程作用:此工程目的是让读者掌握FPGA实现高速接口转网络视频传输的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
在这里插入图片描述

8、工程移植说明

vivado版本不一致处理

1:如果你的vivado版本与本工程vivado版本一致,则直接打开工程;
2:如果你的vivado版本低于本工程vivado版本,则需要打开工程后,点击文件–>另存为;但此方法并不保险,最保险的方法是将你的vivado版本升级到本工程vivado的版本或者更高版本;
在这里插入图片描述
3:如果你的vivado版本高于本工程vivado版本,解决如下:
在这里插入图片描述
打开工程后会发现IP都被锁住了,如下:
在这里插入图片描述
此时需要升级IP,操作如下:
在这里插入图片描述
在这里插入图片描述

FPGA型号不一致处理

如果你的FPGA型号与我的不一致,则需要更改FPGA型号,操作如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
更改FPGA型号后还需要升级IP,升级IP的方法前面已经讲述了;

其他注意事项

1:由于每个板子的DDR不一定完全一样,所以MIG IP需要根据你自己的原理图进行配置,甚至可以直接删掉我这里原工程的MIG并重新添加IP,重新配置;
2:根据你自己的原理图修改引脚约束,在xdc文件中修改即可;
3:纯FPGA移植到Zynq需要在工程中添加zynq软核;

9、上板调试验证

准备工作

需要准备的器材如下:
OV5640摄像头或者笔记本电脑,没有则请使用FPGA内部生成的彩条;
FPGA开发板,没有开发板可以找本博提供;
SFP光模块和光纤;
网线;
我的开发板了连接如下:
在这里插入图片描述
然后将电脑端IP地址设置为如下:
在这里插入图片描述
然后下载bit或者固化bin文件,即可开始测试;

ping测试

打开电脑CMD,输入ping指令;
单次ping测试如下:
在这里插入图片描述
连续ping测试如下:
在这里插入图片描述

ARP测试

打开电脑CMD,输入ARP指令;如下:
在这里插入图片描述

QT上位机配置

打开QT上位机配置如下,然后可以采集显示视频;
在这里插入图片描述

Aurora 8B10B光口视频转以太网效果演示

Aurora 8B10B光口视频转以太网效果演示如下:

FPGA高端项目:图像采集+Aurora 8B10B+UDP图传架构

10、工程代码的获取

代码太大,无法邮箱发送,以某度网盘链接方式发送,
资料获取方式:文章末尾的V名片。
网盘资料如下:
在这里插入图片描述
此外,有很多朋友给本博主提了很多意见和建议,希望能丰富服务内容和选项,因为不同朋友的需求不一样,所以本博主还提供以下服务:
在这里插入图片描述


网站公告

今日签到

点亮在社区的每一天
去签到