仔细回顾一下神经网络到目前的内容,没跟上进度的同学补一下进度。
- 作业:对之前的信贷项目,利用神经网络训练下,尝试用到目前的知识点让代码更加规范和美观。
- 探索性作业(随意完成):尝试进入nn.Module中,查看他的方法
在CPU上训练
import torch
import pandas as pd
import pandas as pd #用于数据处理和分析,可处理表格数据。
import numpy as np #用于数值计算,提供了高效的数组操作。
import matplotlib.pyplot as plt #用于绘制各种类型的图表
import seaborn as sns #基于matplotlib的高级绘图库,能绘制更美观的统计图形。
import torch.nn as nn
import torch.optim as optim
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
import time
import matplotlib.pyplot as plt
import pandas as pd
plt.rcParams['font.sans-serif'] = ['SimHei'] # Windows系统常用黑体字体
plt.rcParams['axes.unicode_minus'] = False
data=pd.read_csv("data.csv")
# 先筛选字符串变量
discrete_features = data.select_dtypes(include=['object']).columns.tolist()
# Home Ownership 标签编码
home_ownership_mapping = {
'Own Home': 1,
'Rent': 2,
'Have Mortgage': 3,
'Home Mortgage': 4
}
data['Home Ownership'] = data['Home Ownership'].map(home_ownership_mapping)
# Years in current job 标签编码
years_in_job_mapping = {
'< 1 year': 1,
'1 year': 2,
'2 years': 3,
'3 years': 4,
'4 years': 5,
'5 years': 6,
'6 years': 7,
'7 years': 8,
'8 years': 9,
'9 years': 10,
'10+ years': 11
}
data['Years in current job'] = data['Years in current job'].map(years_in_job_mapping)
# Purpose 独热编码,记得需要将bool类型转换为数值
data = pd.get_dummies(data, columns=['Purpose'])
data2 = pd.read_csv("data.csv") # 重新读取数据,用来做列名对比
list_final = [] # 新建一个空列表,用于存放独热编码后新增的特征名
for i in data.columns:
if i not in data2.columns:
list_final.append(i) # 这里打印出来的就是独热编码后的特征名
for i in list_final:
data[i] = data[i].astype(int) # 这里的i就是独热编码后的特征名
# Term 0 - 1 映射
term_mapping = {
'Short Term': 0,
'Long Term': 1
}
data['Term'] = data['Term'].map(term_mapping)
data.rename(columns={'Term': 'Long Term'}, inplace=True) # 重命名列
continuous_features = data.select_dtypes(include=['int64', 'float64']).columns.tolist() #把筛选出来的列名转换成列表
# 连续特征用中位数补全
for feature in continuous_features:
mode_value = data[feature].mode()[0] #获取该列的众数。
data[feature].fillna(mode_value, inplace=True) #用众数填充该列的缺失值,inplace=True表示直接在原数据上修改。
# 最开始也说了 很多调参函数自带交叉验证,甚至是必选的参数,你如果想要不交叉反而实现起来会麻烦很多
# 所以这里我们还是只划分一次数据集
from sklearn.model_selection import train_test_split
X = data.drop(['Credit Default'], axis=1) # 特征,axis=1表示按列删除
y = data['Credit Default'] # 标签
# 按照8:2划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 80%训练集,20%测试集
scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
# 将数据转换为PyTorch张量并移至GPU
X_train = torch.FloatTensor(X_train)
y_train = torch.LongTensor(y_train.to_numpy()) # 推荐使用 to_numpy() 方法
y_test = torch.LongTensor(y_test)
X_test = torch.FloatTensor(X_test)
class MLP(nn.Module):
def __init__(self):
super(MLP, self).__init__()
self.fc1 = nn.Linear(31, 10) # 输入层到隐藏层
self.relu = nn.ReLU()
self.fc2 = nn.Linear(10, 2) # 隐藏层到输出层
def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
return out
# 实例化模型并移至CPU
model = MLP()
# 分类问题使用交叉熵损失函数
criterion = nn.CrossEntropyLoss()
# 使用随机梯度下降优化器
optimizer = optim.SGD(model.parameters(), lr=0.01)
# 训练模型
num_epochs = 20000 # 训练的轮数
# 用于存储每100个epoch的损失值和对应的epoch数
losses = []
start_time = time.time() # 记录开始时间
for epoch in range(num_epochs):
# 前向传播
outputs = model(X_train) # 隐式调用forward函数
loss = criterion(outputs, y_train)
# 反向传播和优化
optimizer.zero_grad() #梯度清零,因为PyTorch会累积梯度,所以每次迭代需要清零,梯度累计是那种小的bitchsize模拟大的bitchsize
loss.backward() # 反向传播计算梯度
optimizer.step() # 更新参数
# 记录损失值
if (epoch + 1) % 200 == 0:
losses.append(loss.item()) # item()方法返回一个Python数值,loss是一个标量张量
print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')
# 打印训练信息
if (epoch + 1) % 100 == 0: # range是从0开始,所以epoch+1是从当前epoch开始,每100个epoch打印一次
print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')
time_all = time.time() - start_time # 计算训练时间
print(f'Training time: {time_all:.2f} seconds')
# 可视化损失曲线
plt.plot(range(len(losses)), losses)
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Training Loss over Epochs')
plt.show()
Epoch [100/20000], Loss: 0.6014
Epoch [200/20000], Loss: 0.5815
Epoch [200/20000], Loss: 0.5815
Epoch [300/20000], Loss: 0.5768
Epoch [400/20000], Loss: 0.5738
Epoch [400/20000], Loss: 0.5738
Epoch [500/20000], Loss: 0.5709
Epoch [600/20000], Loss: 0.5679
Epoch [600/20000], Loss: 0.5679
Epoch [700/20000], Loss: 0.5650
Epoch [800/20000], Loss: 0.5620
Epoch [800/20000], Loss: 0.5620
Epoch [900/20000], Loss: 0.5590
Epoch [1000/20000], Loss: 0.5560
Epoch [1000/20000], Loss: 0.5560
Epoch [1100/20000], Loss: 0.5531
Epoch [1200/20000], Loss: 0.5502
Epoch [1200/20000], Loss: 0.5502
Epoch [1300/20000], Loss: 0.5475
Epoch [1400/20000], Loss: 0.5448
Epoch [1400/20000], Loss: 0.5448
Epoch [1500/20000], Loss: 0.5423
Epoch [1600/20000], Loss: 0.5398
Epoch [1600/20000], Loss: 0.5398
Epoch [1700/20000], Loss: 0.5374
...
Epoch [19900/20000], Loss: 0.4666
Epoch [20000/20000], Loss: 0.4666
Epoch [20000/20000], Loss: 0.4666
Training time: 14.75 seconds
Output is truncated. View as a scrollable element or open in a text editor. Adjust cell output settings...
在GPU上训练
import torch
import pandas as pd
import pandas as pd #用于数据处理和分析,可处理表格数据。
import numpy as np #用于数值计算,提供了高效的数组操作。
import matplotlib.pyplot as plt #用于绘制各种类型的图表
import seaborn as sns #基于matplotlib的高级绘图库,能绘制更美观的统计图形。
import torch.nn as nn
import torch.optim as optim
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
import time
import matplotlib.pyplot as plt
import pandas as pd
plt.rcParams['font.sans-serif'] = ['SimHei'] # Windows系统常用黑体字体
plt.rcParams['axes.unicode_minus'] = False
data=pd.read_csv("data.csv")
# 先筛选字符串变量
discrete_features = data.select_dtypes(include=['object']).columns.tolist()
# Home Ownership 标签编码
home_ownership_mapping = {
'Own Home': 1,
'Rent': 2,
'Have Mortgage': 3,
'Home Mortgage': 4
}
data['Home Ownership'] = data['Home Ownership'].map(home_ownership_mapping)
# Years in current job 标签编码
years_in_job_mapping = {
'< 1 year': 1,
'1 year': 2,
'2 years': 3,
'3 years': 4,
'4 years': 5,
'5 years': 6,
'6 years': 7,
'7 years': 8,
'8 years': 9,
'9 years': 10,
'10+ years': 11
}
data['Years in current job'] = data['Years in current job'].map(years_in_job_mapping)
# Purpose 独热编码,记得需要将bool类型转换为数值
data = pd.get_dummies(data, columns=['Purpose'])
data2 = pd.read_csv("data.csv") # 重新读取数据,用来做列名对比
list_final = [] # 新建一个空列表,用于存放独热编码后新增的特征名
for i in data.columns:
if i not in data2.columns:
list_final.append(i) # 这里打印出来的就是独热编码后的特征名
for i in list_final:
data[i] = data[i].astype(int) # 这里的i就是独热编码后的特征名
# Term 0 - 1 映射
term_mapping = {
'Short Term': 0,
'Long Term': 1
}
data['Term'] = data['Term'].map(term_mapping)
data.rename(columns={'Term': 'Long Term'}, inplace=True) # 重命名列
continuous_features = data.select_dtypes(include=['int64', 'float64']).columns.tolist() #把筛选出来的列名转换成列表
# 连续特征用中位数补全
for feature in continuous_features:
mode_value = data[feature].mode()[0] #获取该列的众数。
data[feature].fillna(mode_value, inplace=True) #用众数填充该列的缺失值,inplace=True表示直接在原数据上修改。
# 最开始也说了 很多调参函数自带交叉验证,甚至是必选的参数,你如果想要不交叉反而实现起来会麻烦很多
# 所以这里我们还是只划分一次数据集
from sklearn.model_selection import train_test_split
X = data.drop(['Credit Default'], axis=1) # 特征,axis=1表示按列删除
y = data['Credit Default'] # 标签
# 按照8:2划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 80%训练集,20%测试集
import torch
import torch.nn as nn
import torch.optim as optim
import time
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
import pandas as pd
# 确保设备一致性
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"使用设备: {device}")
# 假设X_train, X_test是DataFrame,y_train, y_test是Series
# (这里只是示例,实际使用时请替换为你的数据加载代码)
# X_train, X_test, y_train, y_test = ...
# 归一化数据
scaler = MinMaxScaler()
try:
# 处理特征数据
# 检查X_train类型并转换为numpy数组
if isinstance(X_train, torch.Tensor):
# 如果是张量,确保在CPU上并转为numpy
X_train_np = X_train.cpu().numpy()
X_test_np = X_test.cpu().numpy()
else:
# 如果是DataFrame或ndarray,直接使用values
X_train_np = X_train.values if isinstance(X_train, pd.DataFrame) else X_train
X_test_np = X_test.values if isinstance(X_test, pd.DataFrame) else X_test
# 用scaler拟合和转换
X_train_scaled = scaler.fit_transform(X_train_np)
X_test_scaled = scaler.transform(X_test_np)
# 转回PyTorch张量并移至设备
X_train = torch.FloatTensor(X_train_scaled).to(device)
X_test = torch.FloatTensor(X_test_scaled).to(device)
# 处理标签数据
# 将pandas Series转换为PyTorch张量
if isinstance(y_train, pd.Series):
y_train = torch.LongTensor(y_train.values).to(device)
y_test = torch.LongTensor(y_test.values).to(device)
elif isinstance(y_train, torch.Tensor):
# 如果已是张量,确保类型和设备正确
y_train = y_train.long().to(device)
y_test = y_test.long().to(device)
else:
# 处理numpy数组情况
y_train = torch.LongTensor(y_train).to(device)
y_test = torch.LongTensor(y_test).to(device)
# 定义MLP模型
class MLP(nn.Module):
def __init__(self):
super(MLP, self).__init__()
self.fc1 = nn.Linear(31, 10) # 输入层到隐藏层,31个特征
self.relu = nn.ReLU()
self.fc2 = nn.Linear(10, 2) # 隐藏层到输出层,2个类别
def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
return out
# 实例化模型并移至设备
model = MLP().to(device)
# 分类问题使用交叉熵损失函数
criterion = nn.CrossEntropyLoss()
# 使用随机梯度下降优化器
optimizer = optim.SGD(model.parameters(), lr=0.01)
# 训练模型
num_epochs = 20000 # 训练的轮数
losses = [] # 用于存储每200个epoch的损失值
start_time = time.time() # 记录开始时间
for epoch in range(num_epochs):
# 前向传播
outputs = model(X_train) # 隐式调用forward函数
loss = criterion(outputs, y_train)
# 反向传播和优化
optimizer.zero_grad() # 梯度清零
loss.backward() # 反向传播计算梯度
optimizer.step() # 更新参数
# 记录损失值
if (epoch + 1) % 200 == 0:
current_loss = loss.item()
losses.append(current_loss)
print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {current_loss:.4f}')
# 每100个epoch打印一次(避免输出过于频繁)
# 已在200epoch时打印,这里可以注释掉避免重复
# if (epoch + 1) % 100 == 0:
# print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')
training_time = time.time() - start_time # 计算训练时间
print(f'Training time: {training_time:.2f} seconds')
# 在测试集上评估模型
model.eval() # 切换到评估模式
with torch.no_grad(): # 不计算梯度
outputs = model(X_test)
_, predicted = torch.max(outputs.data, 1)
accuracy = (predicted == y_test).sum().item() / y_test.size(0)
print(f'Test Accuracy: {accuracy:.4f}')
# 可视化损失曲线
plt.figure(figsize=(10, 6))
plt.plot(range(1, len(losses)+1), losses, marker='o', markersize=3)
plt.xlabel('Epoch (×200)') # 因为每200个epoch记录一次
plt.ylabel('Loss')
plt.title('Training Loss over Epochs')
plt.grid(True, linestyle='--', alpha=0.7)
plt.show()
except Exception as e:
print(f"发生错误: {str(e)}")
# 打印变量类型帮助调试
print(f"X_train类型: {type(X_train)}")
print(f"X_test类型: {type(X_test)}")
print(f"y_train类型: {type(y_train)}")
print(f"y_test类型: {type(y_test)}")
使用设备: cuda
Epoch [200/20000], Loss: 0.6009
Epoch [400/20000], Loss: 0.5847
Epoch [600/20000], Loss: 0.5795
Epoch [800/20000], Loss: 0.5745
Epoch [1000/20000], Loss: 0.5692
Epoch [1200/20000], Loss: 0.5636
Epoch [1400/20000], Loss: 0.5578
Epoch [1600/20000], Loss: 0.5518
Epoch [1800/20000], Loss: 0.5462
Epoch [2000/20000], Loss: 0.5410
Epoch [2200/20000], Loss: 0.5362
Epoch [2400/20000], Loss: 0.5318
Epoch [2600/20000], Loss: 0.5278
Epoch [2800/20000], Loss: 0.5241
Epoch [3000/20000], Loss: 0.5208
Epoch [3200/20000], Loss: 0.5177
Epoch [3400/20000], Loss: 0.5149
Epoch [3600/20000], Loss: 0.5124
Epoch [3800/20000], Loss: 0.5099
Epoch [4000/20000], Loss: 0.5077
Epoch [4200/20000], Loss: 0.5055
Epoch [4400/20000], Loss: 0.5035
Epoch [4600/20000], Loss: 0.5016
Epoch [4800/20000], Loss: 0.4997
...
Epoch [19800/20000], Loss: 0.4642
Epoch [20000/20000], Loss: 0.4641
Training time: 13.05 seconds
Test Accuracy: 0.7700
Output is truncated. View as a scrollable element or open in a text editor. Adjust cell output settings...
@浙大疏锦行