imx6ull-驱动开发篇47——Linux SPI 驱动实验

发布于:2025-08-29 ⋅ 阅读:(18) ⋅ 点赞:(0)

目录

实验程序编写

修改设备树

添加 ICM20608 所使用的 IO

追加 icm20608 子节点

编写 ICM20608 驱动

icm20608reg.h

icm20608.c

icm20608App.c

Makefile文件

运行测试


在之前的文章里:

Linux 下 SPI 驱动框架简介

I.MX6U SPI 主机驱动分析

我们已经学习了linux下SPI驱动相关函数、编写步骤,本讲实验学习如何在 Linux 下编写 SPI 设备驱动,驱动正点原子I.MX6U-ALPHA 开发板上的 ICM-20608 这个 SPI 接口的六轴传感器,在应用程序中读取 ICM-20608的原始传感器数据。

实验程序编写

硬件原理图参考:裸机学习实验17——SPI 实验

修改设备树

添加 ICM20608 所使用的 IO

在设备树文件 imx6ull-alientek-emmc.dts 文件中,添加 ICM20608 所使用的 IO 信息。

iomuxc 节点中添加一个新的子节点来描述 ICM20608 所使用的 SPI 引脚,子节点名字为 pinctrl_ecspi3,节点内容如下所示:

pinctrl_ecspi3: icm20608 {
    fsl,pins = <
        MX6UL_PAD_UART2_TX_DATA__GPIO1_IO20 0x10b0 /* CS 片选信号 */
        MX6UL_PAD_UART2_RX_DATA__ECSPI3_SCLK 0x10b1 /* SCLK 时钟线 */
        MX6UL_PAD_UART2_RTS_B__ECSPI3_MISO 0x10b1 /* MISO 主机输入从机输出 */
        MX6UL_PAD_UART2_CTS_B__ECSPI3_MOSI 0x10b1 /* MOSI 主机输出从机输入 */
    >;
};

UART2_TX_DATA 这个 IO 是 ICM20608 的片选信号,将其复用为了普通的 GPIO,方便我们控制片选信号。

追加 icm20608 子节点

imx6ull-alientek-emmc.dts 文件,ecspi3 节点中追加 icm20608 子节点,如下内容:

&ecspi3 {
    fsl,spi-num-chipselects = <1>;                // 使用1个片选信号
    cs-gpios = <&gpio1 20 GPIO_ACTIVE_LOW>;        // 片选使用GPIO1_IO20,低电平有效
    pinctrl-names = "default";                     // 引脚控制状态名称
    pinctrl-0 = <&pinctrl_ecspi3>;                // 使用pinctrl_ecspi3节点定义的引脚配置
    status = "okay";                               // 启用ECSPI3控制器

    spidev: icm20608@0 {                           // SPI设备节点(ICM20608陀螺仪,接在通道0)
        compatible = "alientek,icm20608";          // 兼容性字符串,用于匹配驱动
        spi-max-frequency = <8000000>;             // 最大SPI时钟频率8MHz
        reg = <0>;                                // 使用SPI通道0(片选线0)
    };
};

设置 SPI 最大时钟频率为 8MHz,这是 ICM20608 的 SPI 接口所能支持的最大的时钟频率。

设备树文件修改完成以后,使用命令 “make dtbs” 重新编译一下,得到新的 dtb 文件,并使用新的 dtb 启动 Linux 系统。

编写 ICM20608 驱动

新建 icm20608.c 和 icm20608reg.h 这两个文件, icm20608.c 为 ICM20608的驱动代码, icm20608reg.h 是 ICM20608 寄存器头文件。

icm20608reg.h

先在 icm20608reg.h 中定义好 ICM20608的寄存器,输入如下内容

#ifndef ICM20608_H
#define ICM20608_H

#define ICM20608G_ID			0XAF	/* ID值 */
#define ICM20608D_ID			0XAE	/* ID值 */

/* ICM20608寄存器 
 *复位后所有寄存器地址都为0,除了
 *Register 107(0X6B) Power Management 1 	= 0x40
 *Register 117(0X75) WHO_AM_I 				= 0xAF或0xAE
 */
/* 陀螺仪和加速度自测(出产时设置,用于与用户的自检输出值比较) */
#define	ICM20_SELF_TEST_X_GYRO		0x00
#define	ICM20_SELF_TEST_Y_GYRO		0x01
#define	ICM20_SELF_TEST_Z_GYRO		0x02
#define	ICM20_SELF_TEST_X_ACCEL		0x0D
#define	ICM20_SELF_TEST_Y_ACCEL		0x0E
#define	ICM20_SELF_TEST_Z_ACCEL		0x0F

/* 陀螺仪静态偏移 */
#define	ICM20_XG_OFFS_USRH			0x13
#define	ICM20_XG_OFFS_USRL			0x14
#define	ICM20_YG_OFFS_USRH			0x15
#define	ICM20_YG_OFFS_USRL			0x16
#define	ICM20_ZG_OFFS_USRH			0x17
#define	ICM20_ZG_OFFS_USRL			0x18

#define	ICM20_SMPLRT_DIV			0x19
#define	ICM20_CONFIG				0x1A
#define	ICM20_GYRO_CONFIG			0x1B
#define	ICM20_ACCEL_CONFIG			0x1C
#define	ICM20_ACCEL_CONFIG2			0x1D
#define	ICM20_LP_MODE_CFG			0x1E
#define	ICM20_ACCEL_WOM_THR			0x1F
#define	ICM20_FIFO_EN				0x23
#define	ICM20_FSYNC_INT				0x36
#define	ICM20_INT_PIN_CFG			0x37
#define	ICM20_INT_ENABLE			0x38
#define	ICM20_INT_STATUS			0x3A

/* 加速度输出 */
#define	ICM20_ACCEL_XOUT_H			0x3B
#define	ICM20_ACCEL_XOUT_L			0x3C
#define	ICM20_ACCEL_YOUT_H			0x3D
#define	ICM20_ACCEL_YOUT_L			0x3E
#define	ICM20_ACCEL_ZOUT_H			0x3F
#define	ICM20_ACCEL_ZOUT_L			0x40

/* 温度输出 */
#define	ICM20_TEMP_OUT_H			0x41
#define	ICM20_TEMP_OUT_L			0x42

/* 陀螺仪输出 */
#define	ICM20_GYRO_XOUT_H			0x43
#define	ICM20_GYRO_XOUT_L			0x44
#define	ICM20_GYRO_YOUT_H			0x45
#define	ICM20_GYRO_YOUT_L			0x46
#define	ICM20_GYRO_ZOUT_H			0x47
#define	ICM20_GYRO_ZOUT_L			0x48

#define	ICM20_SIGNAL_PATH_RESET		0x68
#define	ICM20_ACCEL_INTEL_CTRL 		0x69
#define	ICM20_USER_CTRL				0x6A
#define	ICM20_PWR_MGMT_1			0x6B
#define	ICM20_PWR_MGMT_2			0x6C
#define	ICM20_FIFO_COUNTH			0x72
#define	ICM20_FIFO_COUNTL			0x73
#define	ICM20_FIFO_R_W				0x74
#define	ICM20_WHO_AM_I 				0x75

/* 加速度静态偏移 */
#define	ICM20_XA_OFFSET_H			0x77
#define	ICM20_XA_OFFSET_L			0x78
#define	ICM20_YA_OFFSET_H			0x7A
#define	ICM20_YA_OFFSET_L			0x7B
#define	ICM20_ZA_OFFSET_H			0x7D
#define	ICM20_ZA_OFFSET_L 			0x7E


#endif

icm20608.c

驱动文件icm20608.c,代码如下:

#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/ide.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/gpio.h>
#include <linux/cdev.h>
#include <linux/device.h>
#include <linux/of_gpio.h>
#include <linux/semaphore.h>
#include <linux/timer.h>
#include <linux/i2c.h>
#include <linux/spi/spi.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_gpio.h>
#include <linux/platform_device.h>
#include <asm/mach/map.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include "icm20608reg.h"

#define ICM20608_CNT	1
#define ICM20608_NAME	"icm20608"

struct icm20608_dev {
	dev_t devid;				/* 设备号 	 */
	struct cdev cdev;			/* cdev 	*/
	struct class *class;		/* 类 		*/
	struct device *device;		/* 设备 	 */
	struct device_node	*nd; 	/* 设备节点 */
	int major;					/* 主设备号 */
	void *private_data;			/* 私有数据 		*/
	signed int gyro_x_adc;		/* 陀螺仪X轴原始值 	 */
	signed int gyro_y_adc;		/* 陀螺仪Y轴原始值		*/
	signed int gyro_z_adc;		/* 陀螺仪Z轴原始值 		*/
	signed int accel_x_adc;		/* 加速度计X轴原始值 	*/
	signed int accel_y_adc;		/* 加速度计Y轴原始值	*/
	signed int accel_z_adc;		/* 加速度计Z轴原始值 	*/
	signed int temp_adc;		/* 温度原始值 			*/
};

static struct icm20608_dev icm20608dev;

/*
 * @description	: 从icm20608读取多个寄存器数据
 * @param - dev:  icm20608设备
 * @param - reg:  要读取的寄存器首地址
 * @param - val:  读取到的数据
 * @param - len:  要读取的数据长度
 * @return 		: 操作结果
 */
static int icm20608_read_regs(struct icm20608_dev *dev, u8 reg, void *buf, int len)
{

	int ret = -1;
	unsigned char txdata[1];
	unsigned char * rxdata;
	struct spi_message m;
	struct spi_transfer *t;
	struct spi_device *spi = (struct spi_device *)dev->private_data;
    
	t = kzalloc(sizeof(struct spi_transfer), GFP_KERNEL);	/* 申请内存 */
	if(!t) {
		return -ENOMEM;
	}

	rxdata = kzalloc(sizeof(char) * len, GFP_KERNEL);	/* 申请内存 */
	if(!rxdata) {
		goto out1;
	}

	/* 一共发送len+1个字节的数据,第一个字节为
	寄存器首地址,一共要读取len个字节长度的数据,*/
	txdata[0] = reg | 0x80;		/* 写数据的时候首寄存器地址bit8要置1 */			
	t->tx_buf = txdata;			/* 要发送的数据 */
    t->rx_buf = rxdata;			/* 要读取的数据 */
	t->len = len+1;				/* t->len=发送的长度+读取的长度 */
	spi_message_init(&m);		/* 初始化spi_message */
	spi_message_add_tail(t, &m);/* 将spi_transfer添加到spi_message队列 */
	ret = spi_sync(spi, &m);	/* 同步发送 */
	if(ret) {
		goto out2;
	}
	
    memcpy(buf , rxdata+1, len);  /* 只需要读取的数据 */

out2:
	kfree(rxdata);					/* 释放内存 */
out1:	
	kfree(t);						/* 释放内存 */
	
	return ret;
}

/*
 * @description	: 向icm20608多个寄存器写入数据
 * @param - dev:  icm20608设备
 * @param - reg:  要写入的寄存器首地址
 * @param - val:  要写入的数据缓冲区
 * @param - len:  要写入的数据长度
 * @return 	  :   操作结果
 */
static s32 icm20608_write_regs(struct icm20608_dev *dev, u8 reg, u8 *buf, u8 len)
{
	int ret = -1;
	unsigned char *txdata;
	struct spi_message m;
	struct spi_transfer *t;
	struct spi_device *spi = (struct spi_device *)dev->private_data;
	
	t = kzalloc(sizeof(struct spi_transfer), GFP_KERNEL);	/* 申请内存 */
	if(!t) {
		return -ENOMEM;
	}
	
	txdata = kzalloc(sizeof(char)+len, GFP_KERNEL);
	if(!txdata) {
		goto out1;
	}
	
	/* 一共发送len+1个字节的数据,第一个字节为
	寄存器首地址,len为要写入的寄存器的集合,*/
	*txdata = reg & ~0x80;	/* 写数据的时候首寄存器地址bit8要清零 */
    memcpy(txdata+1, buf, len);	/* 把len个寄存器拷贝到txdata里,等待发送 */
	t->tx_buf = txdata;			/* 要发送的数据 */
	t->len = len+1;				/* t->len=发送的长度+读取的长度 */
	spi_message_init(&m);		/* 初始化spi_message */
	spi_message_add_tail(t, &m);/* 将spi_transfer添加到spi_message队列 */
	ret = spi_sync(spi, &m);	/* 同步发送 */
    if(ret) {
        goto out2;
    }
	
out2:
	kfree(txdata);				/* 释放内存 */
out1:
	kfree(t);					/* 释放内存 */
	return ret;
}

/*
 * @description	: 读取icm20608指定寄存器值,读取一个寄存器
 * @param - dev:  icm20608设备
 * @param - reg:  要读取的寄存器
 * @return 	  :   读取到的寄存器值
 */
static unsigned char icm20608_read_onereg(struct icm20608_dev *dev, u8 reg)
{
	u8 data = 0;
	icm20608_read_regs(dev, reg, &data, 1);
	return data;
}

/*
 * @description	: 向icm20608指定寄存器写入指定的值,写一个寄存器
 * @param - dev:  icm20608设备
 * @param - reg:  要写的寄存器
 * @param - data: 要写入的值
 * @return   :    无
 */	

static void icm20608_write_onereg(struct icm20608_dev *dev, u8 reg, u8 value)
{
	u8 buf = value;
	icm20608_write_regs(dev, reg, &buf, 1);
}

/*
 * @description	: 读取ICM20608的数据,读取原始数据,包括三轴陀螺仪、
 * 				: 三轴加速度计和内部温度。
 * @param - dev	: ICM20608设备
 * @return 		: 无。
 */
void icm20608_readdata(struct icm20608_dev *dev)
{
	unsigned char data[14] = { 0 };
	icm20608_read_regs(dev, ICM20_ACCEL_XOUT_H, data, 14);

	dev->accel_x_adc = (signed short)((data[0] << 8) | data[1]); 
	dev->accel_y_adc = (signed short)((data[2] << 8) | data[3]); 
	dev->accel_z_adc = (signed short)((data[4] << 8) | data[5]); 
	dev->temp_adc    = (signed short)((data[6] << 8) | data[7]); 
	dev->gyro_x_adc  = (signed short)((data[8] << 8) | data[9]); 
	dev->gyro_y_adc  = (signed short)((data[10] << 8) | data[11]);
	dev->gyro_z_adc  = (signed short)((data[12] << 8) | data[13]);
}

/*
 * @description		: 打开设备
 * @param - inode 	: 传递给驱动的inode
 * @param - filp 	: 设备文件,file结构体有个叫做pr似有ate_data的成员变量
 * 					  一般在open的时候将private_data似有向设备结构体。
 * @return 			: 0 成功;其他 失败
 */
static int icm20608_open(struct inode *inode, struct file *filp)
{
	filp->private_data = &icm20608dev; /* 设置私有数据 */
	return 0;
}

/*
 * @description		: 从设备读取数据 
 * @param - filp 	: 要打开的设备文件(文件描述符)
 * @param - buf 	: 返回给用户空间的数据缓冲区
 * @param - cnt 	: 要读取的数据长度
 * @param - offt 	: 相对于文件首地址的偏移
 * @return 			: 读取的字节数,如果为负值,表示读取失败
 */
static ssize_t icm20608_read(struct file *filp, char __user *buf, size_t cnt, loff_t *off)
{
	signed int data[7];
	long err = 0;
	struct icm20608_dev *dev = (struct icm20608_dev *)filp->private_data;

	icm20608_readdata(dev);
	data[0] = dev->gyro_x_adc;
	data[1] = dev->gyro_y_adc;
	data[2] = dev->gyro_z_adc;
	data[3] = dev->accel_x_adc;
	data[4] = dev->accel_y_adc;
	data[5] = dev->accel_z_adc;
	data[6] = dev->temp_adc;
	err = copy_to_user(buf, data, sizeof(data));
	return 0;
}

/*
 * @description		: 关闭/释放设备
 * @param - filp 	: 要关闭的设备文件(文件描述符)
 * @return 			: 0 成功;其他 失败
 */
static int icm20608_release(struct inode *inode, struct file *filp)
{
	return 0;
}

/* icm20608操作函数 */
static const struct file_operations icm20608_ops = {
	.owner = THIS_MODULE,
	.open = icm20608_open,
	.read = icm20608_read,
	.release = icm20608_release,
};

/*
 * ICM20608内部寄存器初始化函数 
 * @param  	: 无
 * @return 	: 无
 */
void icm20608_reginit(void)
{
	u8 value = 0;
	
	icm20608_write_onereg(&icm20608dev, ICM20_PWR_MGMT_1, 0x80);
	mdelay(50);
	icm20608_write_onereg(&icm20608dev, ICM20_PWR_MGMT_1, 0x01);
	mdelay(50);

	value = icm20608_read_onereg(&icm20608dev, ICM20_WHO_AM_I);
	printk("ICM20608 ID = %#X\r\n", value);	

	icm20608_write_onereg(&icm20608dev, ICM20_SMPLRT_DIV, 0x00); 	/* 输出速率是内部采样率					*/
	icm20608_write_onereg(&icm20608dev, ICM20_GYRO_CONFIG, 0x18); 	/* 陀螺仪±2000dps量程 				*/
	icm20608_write_onereg(&icm20608dev, ICM20_ACCEL_CONFIG, 0x18); 	/* 加速度计±16G量程 					*/
	icm20608_write_onereg(&icm20608dev, ICM20_CONFIG, 0x04); 		/* 陀螺仪低通滤波BW=20Hz 				*/
	icm20608_write_onereg(&icm20608dev, ICM20_ACCEL_CONFIG2, 0x04); /* 加速度计低通滤波BW=21.2Hz 			*/
	icm20608_write_onereg(&icm20608dev, ICM20_PWR_MGMT_2, 0x00); 	/* 打开加速度计和陀螺仪所有轴 				*/
	icm20608_write_onereg(&icm20608dev, ICM20_LP_MODE_CFG, 0x00); 	/* 关闭低功耗 						*/
	icm20608_write_onereg(&icm20608dev, ICM20_FIFO_EN, 0x00);		/* 关闭FIFO						*/
}

 /*
  * @description     : spi驱动的probe函数,当驱动与
  *                    设备匹配以后此函数就会执行
  * @param - client  : i2c设备
  * @param - id      : i2c设备ID
  * 
  */	
static int icm20608_probe(struct spi_device *spi)
{
	/* 1、构建设备号 */
	if (icm20608dev.major) {
		icm20608dev.devid = MKDEV(icm20608dev.major, 0);
		register_chrdev_region(icm20608dev.devid, ICM20608_CNT, ICM20608_NAME);
	} else {
		alloc_chrdev_region(&icm20608dev.devid, 0, ICM20608_CNT, ICM20608_NAME);
		icm20608dev.major = MAJOR(icm20608dev.devid);
	}

	/* 2、注册设备 */
	cdev_init(&icm20608dev.cdev, &icm20608_ops);
	cdev_add(&icm20608dev.cdev, icm20608dev.devid, ICM20608_CNT);

	/* 3、创建类 */
	icm20608dev.class = class_create(THIS_MODULE, ICM20608_NAME);
	if (IS_ERR(icm20608dev.class)) {
		return PTR_ERR(icm20608dev.class);
	}

	/* 4、创建设备 */
	icm20608dev.device = device_create(icm20608dev.class, NULL, icm20608dev.devid, NULL, ICM20608_NAME);
	if (IS_ERR(icm20608dev.device)) {
		return PTR_ERR(icm20608dev.device);
	}

	/*初始化spi_device */
	spi->mode = SPI_MODE_0;	/*MODE0,CPOL=0,CPHA=0*/
	spi_setup(spi);
	icm20608dev.private_data = spi; /* 设置私有数据 */

	/* 初始化ICM20608内部寄存器 */
	icm20608_reginit();		
	return 0;
}

/*
 * @description     : i2c驱动的remove函数,移除i2c驱动的时候此函数会执行
 * @param - client 	: i2c设备
 * @return          : 0,成功;其他负值,失败
 */
static int icm20608_remove(struct spi_device *spi)
{
	/* 删除设备 */
	cdev_del(&icm20608dev.cdev);
	unregister_chrdev_region(icm20608dev.devid, ICM20608_CNT);

	/* 注销掉类和设备 */
	device_destroy(icm20608dev.class, icm20608dev.devid);
	class_destroy(icm20608dev.class);
	return 0;
}

/* 传统匹配方式ID列表 */
static const struct spi_device_id icm20608_id[] = {
	{"alientek,icm20608", 0},  
	{}
};

/* 设备树匹配列表 */
static const struct of_device_id icm20608_of_match[] = {
	{ .compatible = "alientek,icm20608" },
	{ /* Sentinel */ }
};

/* SPI驱动结构体 */	
static struct spi_driver icm20608_driver = {
	.probe = icm20608_probe,
	.remove = icm20608_remove,
	.driver = {
			.owner = THIS_MODULE,
		   	.name = "icm20608",
		   	.of_match_table = icm20608_of_match, 
		   },
	.id_table = icm20608_id,
};
		   
/*
 * @description	: 驱动入口函数
 * @param 		: 无
 * @return 		: 无
 */
static int __init icm20608_init(void)
{
	return spi_register_driver(&icm20608_driver);
}

/*
 * @description	: 驱动出口函数
 * @param 		: 无
 * @return 		: 无
 */
static void __exit icm20608_exit(void)
{
	spi_unregister_driver(&icm20608_driver);
}

module_init(icm20608_init);
module_exit(icm20608_exit);
MODULE_LICENSE("GPL");

关键代码分析如下:

icm20608 设备结构体icm20608_dev,其中有private_data变量,对于 SPI 设备驱动来讲最核心的就是 spi_device。

probe 函数会向驱动提供当前 SPI 设备对应的spi_device,因此在 probe 函数中设置 private_data 为 probe 函数传递进来的 spi_device 参数。

struct icm20608_dev {
	dev_t devid;				/* 设备号 	 */
	struct cdev cdev;			/* cdev 	*/
	struct class *class;		/* 类 		*/
	struct device *device;		/* 设备 	 */
	struct device_node	*nd; 	/* 设备节点 */
	int major;					/* 主设备号 */
	void *private_data;			/* 私有数据 		*/
	signed int gyro_x_adc;		/* 陀螺仪X轴原始值 	 */
	signed int gyro_y_adc;		/* 陀螺仪Y轴原始值		*/
	signed int gyro_z_adc;		/* 陀螺仪Z轴原始值 		*/
	signed int accel_x_adc;		/* 加速度计X轴原始值 	*/
	signed int accel_y_adc;		/* 加速度计Y轴原始值	*/
	signed int accel_z_adc;		/* 加速度计Z轴原始值 	*/
	signed int temp_adc;		/* 温度原始值 			*/
};

spi_driver 注册与注销函数:

icm20608_init函数里,使用spi_register_driver 向 Linux 系统注册上面定义的 icm20608_driver。
icm20608_exit函数里,使用spi_unregister_driver 注销掉前面注册的 icm20608_driver。

static int __init icm20608_init(void)
{
	return spi_register_driver(&icm20608_driver);
}

static void __exit icm20608_exit(void)
{
	spi_unregister_driver(&icm20608_driver);
}

icm20608_probe函数:当设备与驱动匹配成功以后此函数就会执行,标准的注册字符设备驱动。

  • 设置 SPI 为模式 0,也就是 CPOL=0, CPHA=0。
  • 设置好 spi_device 以后需要使用 spi_setup 配置一下。
  • 设置 icm20608dev 的 private_data 成员变量为 spi_device。
  • 调用 icm20608_reginit 函数初始化 ICM20608,主要是初始化 ICM20608 指定寄存器。
	/*初始化spi_device */
	spi->mode = SPI_MODE_0;	/*MODE0,CPOL=0,CPHA=0*/
	spi_setup(spi);
	icm20608dev.private_data = spi; /* 设置私有数据 */

	/* 初始化ICM20608内部寄存器 */
	icm20608_reginit();		

其余代码就是 icm20608 寄存器读写与初始化函数

// 从icm20608读取多个寄存器数据
static int icm20608_read_regs(struct icm20608_dev *dev, u8 reg, void *buf, int len)

// 向icm20608多个寄存器写入数据
static s32 icm20608_write_regs(struct icm20608_dev *dev, u8 reg, u8 *buf, u8 len)

// 读取icm20608指定寄存器值,读取一个寄存器
static unsigned char icm20608_read_onereg(struct icm20608_dev *dev, u8 reg)

// 向icm20608指定寄存器写入指定的值,写一个寄存器
static void icm20608_write_onereg(struct icm20608_dev *dev, u8 reg, u8 value)

// 读取ICM20608的数据,读取原始数据,包括三轴陀螺仪、三轴加速度计和内部温度
void icm20608_readdata(struct icm20608_dev *dev)

icm20608_read函数,从设备读取数据。当应用程序调用 read 函数读取 icm20608 设备文件的时候,icm20608_read函数就会执行,调用icm20608_readdata 函数,读取 icm20608 的原始数据并将其上报给应用程序。

static ssize_t icm20608_read(struct file *filp, char __user *buf, size_t cnt, loff_t *off)
{
	signed int data[7];
	long err = 0;
	struct icm20608_dev *dev = (struct icm20608_dev *)filp->private_data;

	icm20608_readdata(dev);
	data[0] = dev->gyro_x_adc;
	data[1] = dev->gyro_y_adc;
	data[2] = dev->gyro_z_adc;
	data[3] = dev->accel_x_adc;
	data[4] = dev->accel_y_adc;
	data[5] = dev->accel_z_adc;
	data[6] = dev->temp_adc;
	err = copy_to_user(buf, data, sizeof(data));
	return 0;
}

icm20608App.c

测试app,icm20608App.c,代码如下:

#include "stdio.h"
#include "unistd.h"
#include "sys/types.h"
#include "sys/stat.h"
#include "sys/ioctl.h"
#include "fcntl.h"
#include "stdlib.h"
#include "string.h"
#include <poll.h>
#include <sys/select.h>
#include <sys/time.h>
#include <signal.h>
#include <fcntl.h>

/*
 * @description		: main主程序
 * @param - argc 	: argv数组元素个数
 * @param - argv 	: 具体参数
 * @return 			: 0 成功;其他 失败
 */
int main(int argc, char *argv[])
{
	int fd;
	char *filename;
	signed int databuf[7];
	unsigned char data[14];
	signed int gyro_x_adc, gyro_y_adc, gyro_z_adc;
	signed int accel_x_adc, accel_y_adc, accel_z_adc;
	signed int temp_adc;

	float gyro_x_act, gyro_y_act, gyro_z_act;
	float accel_x_act, accel_y_act, accel_z_act;
	float temp_act;

	int ret = 0;

	if (argc != 2) {
		printf("Error Usage!\r\n");
		return -1;
	}

	filename = argv[1];
	fd = open(filename, O_RDWR);
	if(fd < 0) {
		printf("can't open file %s\r\n", filename);
		return -1;
	}

	while (1) {
		ret = read(fd, databuf, sizeof(databuf));
		if(ret == 0) { 			/* 数据读取成功 */
			gyro_x_adc = databuf[0];
			gyro_y_adc = databuf[1];
			gyro_z_adc = databuf[2];
			accel_x_adc = databuf[3];
			accel_y_adc = databuf[4];
			accel_z_adc = databuf[5];
			temp_adc = databuf[6];

			/* 计算实际值 */
			gyro_x_act = (float)(gyro_x_adc)  / 16.4;
			gyro_y_act = (float)(gyro_y_adc)  / 16.4;
			gyro_z_act = (float)(gyro_z_adc)  / 16.4;
			accel_x_act = (float)(accel_x_adc) / 2048;
			accel_y_act = (float)(accel_y_adc) / 2048;
			accel_z_act = (float)(accel_z_adc) / 2048;
			temp_act = ((float)(temp_adc) - 25 ) / 326.8 + 25;


			printf("\r\n原始值:\r\n");
			printf("gx = %d, gy = %d, gz = %d\r\n", gyro_x_adc, gyro_y_adc, gyro_z_adc);
			printf("ax = %d, ay = %d, az = %d\r\n", accel_x_adc, accel_y_adc, accel_z_adc);
			printf("temp = %d\r\n", temp_adc);
			printf("实际值:");
			printf("act gx = %.2f°/S, act gy = %.2f°/S, act gz = %.2f°/S\r\n", gyro_x_act, gyro_y_act, gyro_z_act);
			printf("act ax = %.2fg, act ay = %.2fg, act az = %.2fg\r\n", accel_x_act, accel_y_act, accel_z_act);
			printf("act temp = %.2f°C\r\n", temp_act);
		}
		usleep(100000); /*100ms */
	}
	close(fd);	/* 关闭文件 */	
	return 0;
}

在 while 循环中每隔 100ms 从 icm20608 中读取一次数据,读取到 icm20608原始数据以后,将其转换为实际值,比如陀螺仪就是角速度、加速度计就是 g 值,最终将传感器原始数据和得到的实际值显示在终端上。

Makefile文件

makefile文件只需要修改 obj-m 变量的值,改为icm20608.o。

代码如下:

KERNELDIR := /home/huax/linux/linux_test/linux-imx-rel_imx_4.1.15_2.1.0_ga
 
CURRENT_PATH := $(shell pwd)
obj-m := icm20608.o
 
build: kernel_modules
kernel_modules:
	$(MAKE) -C $(KERNELDIR) M=$(CURRENT_PATH) modules
clean:
	$(MAKE) -C $(KERNELDIR) M=$(CURRENT_PATH) clean

运行测试

编译出驱动模块文件:

make -j32

编译 icm20608App.c ,需要使能硬件浮点,这样可以加速浮点计算。

使能硬件浮点很简单,在编译的时候加入如下参数即可:

-march-armv7-a -mfpu-neon -mfloat=hard

使能硬件浮点编译 icm20608App.c 这个测试程序:

arm-linux-gnueabihf-gcc -march=armv7-a -mfpu=neon -mfloat-abi=hard icm20608App.c -o
icm20608App

编译成功以后,就会生成一个名为“icm20608.ko”的驱动模块文件,和icm20608App 这个应用程序。

使用 arm-linux-gnueabihf-readelf 查看一下编译出来的 icm20608App:

可以看出, FPU 架构为 VFPv3, SIMD 使用了 NEON,并且使用了 SP 和 DP,说明 icm20608App 这个应用程序使用了硬件浮点。

将编译出来的icm20608.ko 和 icm20608App 这 两 个 文 件 拷 贝 到rootfs/lib/modules/4.1.15 目录中,重启开发板。

进入到目录 lib/modules/4.1.15 中,输入如下命令加载 icm20608.ko 这个驱动模块:

depmod //第一次加载驱动的时候需要运行此命令
modprobe icm20608.ko //加载驱动模块

当驱动模块加载成功以后,使用 icm20608App 来测试:

./icm20608App /dev/icm20608

测试 APP 会不断从 ICM20608 中读取数据,打印出来,如图:

大家可以试着晃动一下开发板,陀螺仪和加速度计的值就会有变化。


网站公告

今日签到

点亮在社区的每一天
去签到