WAV to C Header Converter
将WAV音频文件转换为C语言头文件的Python脚本,支持将音频数据嵌入到C/C++项目中。
功能特性
音频格式支持
- PCM格式:支持8位、16位、24位、32位PCM音频
- IEEE Float格式:支持32位浮点音频
- 多声道:支持单声道、立体声及多声道音频
- 自动格式检测:自动识别WAV文件的编码格式
智能数组类型选择
- 16位及以下WAV → 生成
int16_t
数组(紧凑存储) - 32位WAV → 生成
int32_t
数组(保持完整精度)
生成的头文件包含
- 包含防护宏定义
- 音频参数宏定义(采样率、声道数、采样点数)
- 格式化的音频数据数组
- 符合C语言标准的变量命名
使用方法
基本用法
- 将WAV文件放在脚本同一目录下
- 运行脚本:
python convert_wav_to_int16_h.py
脚本会自动扫描当前目录下的所有 .wav
文件并转换。
输出示例
对于16位WAV文件 audio.wav
,会生成 audio.h
:
#ifndef AUDIO_H_
#define AUDIO_H_
#include <stdint.h>
#define AUDIO_SAMPLE_RATE 44100
#define AUDIO_NUM_CHANNELS 2
#define AUDIO_NUM_SAMPLES 88200
const int16_t audio_samples[AUDIO_NUM_SAMPLES] = {
1234, -5678, 2345, -6789, 3456, -7890, 4567, -8901,
5678, -9012, 6789, -1023, 7890, -2134, 8901, -3245,
// ... 更多数据
};
#endif
对于32位WAV文件,会生成 int32_t
数组:
const int32_t audio_samples[AUDIO_NUM_SAMPLES] = {
123456789, -987654321, 234567890, -876543210,
// ... 更多数据
};
支持的音频格式
位深度 | 格式类型 | 输出数组类型 | 说明 |
---|---|---|---|
8位 | PCM | int16_t |
无符号转有符号,缩放到16位 |
16位 | PCM | int16_t |
直接使用原始值 |
24位 | PCM | int16_t |
缩放到16位(截断低8位) |
32位 | PCM | int32_t |
保持完整32位精度 |
32位 | IEEE Float | int32_t |
浮点转整数,缩放到32位范围 |
文件命名规则
- 输出文件名:
原文件名.h
- 变量名:基于文件名生成合法的C标识符
- 宏定义:变量名转大写
命名示例
my-audio.wav
→ 变量名:my_audio_samples
,宏前缀:MY_AUDIO_
123sound.wav
→ 变量名:wav_123sound_samples
,宏前缀:WAV_123SOUND_
应用场景
- 嵌入式系统:将音效直接编译到固件中
- 游戏开发:嵌入音效资源,避免文件IO
- 音频处理:将测试音频数据编译到程序中
- 实时系统:避免运行时文件加载延迟
技术细节
数据转换
- 所有音频数据按小端序处理
- 浮点数据范围限制在 [-1.0, 1.0]
- 超出范围的整数数据会被裁剪
- NaN浮点值会被转换为0
内存效率
- 使用生成器避免大文件内存占用
- 分块读取音频数据(4096帧/块)
- 16位数组每行16个数据,32位数组每行8个数据
错误处理
- 跳过不支持的音频格式
- 显示详细的转换状态信息
- 继续处理其他文件即使某个文件出错
输出信息
脚本运行时会显示每个文件的处理状态:
[ok] audio.wav -> audio.h | fmt=PCM, ch=2, sr=44100, width=2 bytes, samples=88200, array_type=int16_t
[skip] unsupported.wav: unsupported sample width 5 bytes
[error] corrupted.wav: Invalid WAV file format
依赖要求
- Python 3.6+
- 标准库模块:
os
,struct
,wave
无需安装额外的第三方库。
python代码
import os
import struct
import wave
def sanitize_name(name: str) -> str:
base = ''.join(c if (c.isalnum() or c == '_') else '_' for c in name)
if not base or base[0].isdigit():
base = 'wav_' + base
return base
def to_macro(name: str) -> str:
return sanitize_name(name).upper()
def detect_wav_format(path: str):
# Returns ("PCM" or "FLOAT")
try:
with open(path, 'rb') as f:
if f.read(4) != b'RIFF':
return "PCM"
f.read(4) # size
if f.read(4) != b'WAVE':
return "PCM"
# iterate chunks
while True:
hdr = f.read(8)
if len(hdr) < 8:
break
chunk_id, chunk_size = hdr[:4], struct.unpack('<I', hdr[4:8])[0]
if chunk_id == b'fmt ':
fmt_data = f.read(chunk_size)
if len(fmt_data) < 16:
return "PCM"
audio_format = struct.unpack('<H', fmt_data[0:2])[0]
if audio_format == 1:
return "PCM"
if audio_format == 3:
return "FLOAT"
if audio_format == 0xFFFE and len(fmt_data) >= 40:
# WAVE_FORMAT_EXTENSIBLE: subformat at offset 24 (16 bytes)
subformat = fmt_data[24:40]
# First 4 bytes little-endian correspond to PCM(1) or IEEE_FLOAT(3)
code = struct.unpack('<I', subformat[0:4])[0]
if code == 1:
return "PCM"
if code == 3:
return "FLOAT"
return "PCM"
else:
# skip chunk (with padding byte if size is odd)
skip = chunk_size + (chunk_size & 1)
f.seek(skip, 1)
except Exception:
return "PCM"
return "PCM"
def clip_int16(v: int) -> int:
if v > 32767:
return 32767
if v < -32768:
return -32768
return v
def convert_sample(sample_bytes: bytes, fmt: str, sampwidth: int, target_width: int) -> int:
# Returns int16 or int32 value based on target_width
if sampwidth == 1:
# 8-bit unsigned PCM: 0..255 -> -128..127, then scale
u = sample_bytes[0]
s = u - 128
if target_width == 2:
return s << 8 # scale to int16
else:
return s << 24 # scale to int32
elif sampwidth == 2:
# 16-bit signed little-endian
val = struct.unpack('<h', sample_bytes)[0]
if target_width == 2:
return val
else:
return val << 16 # scale to int32
elif sampwidth == 3:
# 24-bit signed little-endian
b0, b1, b2 = sample_bytes[0], sample_bytes[1], sample_bytes[2]
val = b0 | (b1 << 8) | (b2 << 16)
if b2 & 0x80:
val -= 1 << 24
if target_width == 2:
# Scale down to 16-bit
return clip_int16(val >> 8)
else:
return val << 8 # scale to int32
elif sampwidth == 4:
if fmt == "PCM":
# 32-bit signed little-endian
val = struct.unpack('<i', sample_bytes)[0]
if target_width == 2:
return clip_int16(val >> 16)
else:
return val
else:
# 32-bit IEEE float
f = struct.unpack('<f', sample_bytes)[0]
if f != f: # NaN
f = 0.0
if f > 1.0:
f = 1.0
elif f < -1.0:
f = -1.0
if target_width == 2:
return clip_int16(int(round(f * 32767.0)))
else:
return int(round(f * 2147483647.0)) # scale to int32
else:
# Unsupported width: fallback zero
return 0
def write_header_start(fp, guard: str, var_base: str, num_samples: int, sample_rate: int, num_channels: int):
fp.write(f"#ifndef {guard}\n")
fp.write(f"#define {guard}\n\n")
fp.write("#include <stdint.h>\n\n")
macro_base = to_macro(var_base)
fp.write(f"#define {macro_base}_SAMPLE_RATE {sample_rate}\n")
fp.write(f"#define {macro_base}_NUM_CHANNELS {num_channels}\n")
fp.write(f"#define {macro_base}_NUM_SAMPLES {num_samples}\n\n")
fp.write(f"extern const int16_t {var_base}_samples[{macro_base}_NUM_SAMPLES];\n\n")
fp.write("#endif\n")
def write_header_with_array(path_h: str, var_base: str, sample_iter, total_samples: int, sample_rate: int, num_channels: int, sampwidth: int):
guard = to_macro(var_base) + "_H_"
# Determine array type based on sample width
if sampwidth == 4:
array_type = "int32_t"
per_line = 8 # fewer numbers per line for int32
else:
array_type = "int16_t"
per_line = 16
with open(path_h, "w", encoding="utf-8") as fp:
fp.write(f"#ifndef {guard}\n")
fp.write(f"#define {guard}\n\n")
fp.write("#include <stdint.h>\n\n")
macro_base = to_macro(var_base)
fp.write(f"#define {macro_base}_SAMPLE_RATE {sample_rate}\n")
fp.write(f"#define {macro_base}_NUM_CHANNELS {num_channels}\n")
fp.write(f"#define {macro_base}_NUM_SAMPLES {total_samples}\n\n")
fp.write(f"const {array_type} {var_base}_samples[{macro_base}_NUM_SAMPLES] = {{\n ")
count = 0
first = True
for s in sample_iter:
if not first:
fp.write(", ")
else:
first = False
fp.write(str(s))
count += 1
if (count % per_line) == 0:
fp.write("\n ")
fp.write("\n};\n\n")
fp.write("#endif\n")
def convert_wav_to_h(path_wav: str):
base_name = os.path.splitext(os.path.basename(path_wav))[0]
var_base = sanitize_name(base_name)
out_h = f"{base_name}.h"
fmt = detect_wav_format(path_wav)
with wave.open(path_wav, 'rb') as wf:
nch = wf.getnchannels()
sampwidth = wf.getsampwidth() # bytes per sample
fr = wf.getframerate()
nframes = wf.getnframes()
if sampwidth not in (1, 2, 3, 4):
print(f"[skip] {path_wav}: unsupported sample width {sampwidth} bytes")
return
# Determine target width: 32-bit WAV -> int32, others -> int16
target_width = 4 if sampwidth == 4 else 2
array_type = "int32_t" if target_width == 4 else "int16_t"
total_samples = nframes * nch
def sample_generator():
chunk_frames = 4096
while True:
frames = wf.readframes(chunk_frames)
if not frames:
break
mv = memoryview(frames)
step = sampwidth
for off in range(0, len(mv), step):
# mv[off:off+step] is a memoryview, convert to bytes for struct/unpack
sb = mv[off:off + step].tobytes()
yield convert_sample(sb, fmt, sampwidth, target_width)
write_header_with_array(out_h, var_base, sample_generator(), total_samples, fr, nch, sampwidth)
print(f"[ok] {path_wav} -> {out_h} | fmt={fmt}, ch={nch}, sr={fr}, width={sampwidth} bytes, samples={total_samples}, array_type={array_type}")
def main():
wavs = [f for f in os.listdir('.') if f.lower().endswith('.wav')]
if not wavs:
print("No .wav files found in current directory.")
return
wavs.sort()
for w in wavs:
try:
convert_wav_to_h(w)
except Exception as e:
print(f"[error] {w}: {e}")
if __name__ == "__main__":
main()