人工智能中的线性代数总结--简单篇

发布于:2025-09-10 ⋅ 阅读:(23) ⋅ 点赞:(0)

numpy库中的dot函数来计算矩阵和向量的点积

def matrix_vector_dot_product(a, b):
    import numpy as np
    if (len(a[0]) != len(b)):
        return -1
    # 使用tolist()将结果转换为列表
    return np.dot(a, b).tolist()

原始方法

def matrix_vector_dot_product(matrix, vector):
    if len(matrix[0]) != len(vector):
        return -1
    l = []
    for i in matrix:
        num = 0
        for j in range(len(i)):
            num += (i[j]*vector[j])
        l.append(num)
    return l

               

# 主程序
if __name__ == "__main__":
    # 输入矩阵和向量
    matrix_input = input()
    vector_input = input()

    # 处理输入
    import ast
    matrix = ast.literal_eval(matrix_input)
    vector = ast.literal_eval(vector_input)

    # 调用函数计算点积
    output = matrix_vector_dot_product(matrix, vector)
    
    # 输出结果
    print(output)

numpy库中给定的矩阵 A,其转置矩阵表示为 A^T

def transpose_matrix(a: List[List[Union[int, float]]]) -> List[List[Union[int, float]]]:
    import numpy as np
    return np.array(a).T.tolist()

使用numpy库的reshape方法矩阵重塑

矩阵重塑是将一个矩阵转换为另一个形状的过程,前提是新形状的元素总数与原矩阵相同

def reshape_matrix(a: List[List[Union[int, float]]], new_shape: Tuple[int, int]) -> List[List[Union[int, float]]]:
    import numpy as np
    if len(a) * len(a[0]) != new_shape[0] * new_shape[1]:
        return -1
    return np.array(a).reshape(new_shape).tolist()

使用numpy库的mean方法按行或列计算平均值

def calculate_matrix_mean(matrix: List[List[Union[int, float]]], mode: str) -> List[float]:
    import numpy as np
    if mode == 'column':
        return np.mean(matrix, axis=0).tolist()
    elif mode == 'row':
        return np.mean(matrix, axis=1).tolist()
    else:
        raise ValueError("Mode must be 'row' or 'column'")

使用python的广播机制进行标量的矩阵乘法

def scalar_multiply(matrix: List[List[Union[int, float]]], scalar: Union[int, float]) -> List[List[Union[int, float]]]:
   import numpy as np
   return (np.array(matrix) * scalar).tolist()

使用numpy库的cov方法计算协方差矩阵

协方差矩阵是一种描述两个随机变量之间关系的矩阵,其计算公式为:

import numpy as np

def jia(vectors, a):
    return [i + a for i in vectors]

def dianji(a,b):
    if len(a) != len(b):
        return -1
    s = 0
    for j in range(len(a)):
        s += a[j] * b[j]
    return s

def cov(x,y):
    return dianji(jia(x, -sum(x)/len(x)),jia(y, -sum(y)/len(y))) / (len(x)-1)

def calculate_covariance_matrix(vectors):
    # 补全代码
    return [[cov(x,y) for x in vectors] for y in vectors]

# 主程序
if __name__ == "__main__":
    # 输入
    ndarrayA = input()

    # 处理输入
    import ast
    A = ast.literal_eval(ndarrayA)

    # 调用函数计算
    output = calculate_covariance_matrix(A)
    
    # 输出结果
    print(output)

原始方法

import numpy as np

def calculate_covariance_matrix(vectors):
    n_features = len(vectors)
    n_observations = len(vectors[0])
    covariance_matrix = np.zeros([n_features, n_features])
 
    means = [sum(feature) / n_observations for feature in vectors]
 
    for i in range(n_features):
        for j in range(i, n_features):
            covariance = sum(
                (vectors[i][k] - means[i]) * (vectors[j][k] - means[j])
                for k in range(n_observations)
            ) / (n_observations - 1)
            covariance_matrix[i][j] = covariance_matrix[j][i] = covariance
 
    return covariance_matrix.tolist()
# 主程序
if __name__ == "__main__":
    # 输入
    ndarrayA = input()

    # 处理输入
    import ast
    A = ast.literal_eval(ndarrayA)

    # 调用函数计算
    output = calculate_covariance_matrix(A)
    
    # 输出结果
    print(output)

基向量变换矩阵

基向量变换矩阵(Basis Vector Transformation Matrix)是一种常用的矩阵,用于将基向量变换为另一个基向量。

import numpy as np

def transform_basis(B, C):
    B = np.array(B)
    C = np.array(C)
    C = np.linalg.inv(C)
    P = B@C
    return P.tolist()


if __name__ == "__main__":
    B = np.array(eval(input()))
    C = np.array(eval(input()))
    print(transform_basis(B, C))

 将向量转换为对角矩阵

def make_diagonal(x):
    identity_matrix = np.identity(np.size(x))
    return (identity_matrix*x)

原始方法

def make_diagonal(x):
    x = np.array(x)
    zeros = np.zeros((len(x),len(x)),dtype=np.float16)
    for i in range(len(x)):
        zeros[i,i]=x[i]
    return zeros
    
if __name__ == "__main__":
    x = np.array(eval(input()))
    print(make_diagonal(x))

实现压缩行稀疏矩阵(CSR)格式转换

压缩行稀疏矩阵(CSR)格式是一种特殊的矩阵存储格式,其特点是只存储非零元素的值、行号和列指针。本质上是一种三元组表示法。

输入

[[1, 0, 0], [2, 3, 0], [0, 4, 5]]

输出

[1, 2, 3, 4, 5]
[0, 0, 1, 1, 2]
[0, 1, 3, 5]

def compressed_row_sparse_matrix(dense_matrix):
    vals = []
    col_idx = []
    row_ptr=[0]
    for x in dense_matrix:
        for i,y in enumerate(x):
            if y!=0:
                vals.append(y)
                col_idx.append(i)
        row_ptr.append(len(vals))
    return vals, col_idx, row_ptr


if __name__ == "__main__":
    dense_matrix = eval(input())
    vals, col_idx, row_ptr = compressed_row_sparse_matrix(dense_matrix)
    print(vals)
    print(col_idx)
    print(row_ptr)

实现向量到直线的正交投影

def orthogonal_projection(v, L):
    import numpy as np
    v = np.array(v)
    L = np.array(L)
    a = (((v@L)/np.dot(L,L))*L)
    a = a.tolist()
    return a


if __name__ == "__main__":
    v = eval(input())
    L = eval(input())
    print(orthogonal_projection(v, L))

实现压缩列稀疏矩阵

def compressed_col_sparse_matrix(dense_matrix):
    from scipy.sparse import csc_matrix
    sparse = csc_matrix(dense_matrix)
    return sparse.data.tolist(), sparse.indices.tolist(), sparse.indptr.tolist()

原始方法

def compressed_col_sparse_matrix(dense_matrix):
    vals, row_idx, col_ptr = [],[],[0]
    import numpy as np
    dense_matrix = np.array(dense_matrix)
    dense_matrix = dense_matrix.T
    for i in dense_matrix:
        for j,x in enumerate(i):
            if x!=0:
                vals.append(x)
                row_idx.append(j)
        col_ptr.append(len(vals))
    return vals, row_idx, col_ptr



if __name__ == "__main__":
    dense_matrix = eval(input())
    vals, row_idx, col_ptr = compressed_col_sparse_matrix(dense_matrix)
    print(vals)
    print(row_idx)
    print(col_ptr)

计算向量之间的余弦相似度

import numpy as np

def cosine_similarity(v1, v2):
	# Implement your code here
    if v1.shape != v2.shape:
        raise ValueError("Arrays must have the same shape")
 
    if v1.size == 0:
        raise ValueError("Arrays cannot be empty")
    v1 = v1.flatten()
    v2 = v2.flatten()
    val= (v1@v2)/(np.sqrt(np.dot(v1,v1))*np.sqrt(np.dot(v2,v2)))
    return round(val, 3)


if __name__ == "__main__":
    v1 = np.array(eval(input()))
    v2 = np.array(eval(input()))
    print(cosine_similarity(v1, v2))

泊松分布概率计算器

泊松分布是一种描述随机事件发生次数的概率分布,其计算公式为:

import math

def poisson_probability(k, lam):

	# Your code here
	o=(math.exp(-lam))*(lam**k)
	u=math.factorial(k)
	val=o/u
	return round(val, 5)

if __name__ == "__main__":
    k, lam = map(int, input().split())
    print(poisson_probability(k, lam))


网站公告

今日签到

点亮在社区的每一天
去签到