【线段树】P9290 [ROI 2018] Decryption|普及+

发布于:2025-09-14 ⋅ 阅读:(24) ⋅ 点赞:(0)

本文涉及知识点

C++线段树(Segment Tree)一:正确性证明、模板及封装类及样例

P9290 [ROI 2018] Decryption

题目背景

译自 ROI 2018 Day2 T1. Расшифровка (Decryption)。

题目描述

研究表明,汉字的顺序并不一定能影响阅读。科学家们对数列进行了类似的研究。

给一个正整数数列,若数列首项为数列中所有数的最小值,末项为数列中的最大值,则我们称这是个正确的数列。例如,序列 [ 1 , 3 , 2 , 4 ] [1, 3, 2, 4] [1,3,2,4] [ 1 , 2 , 1 , 2 ] [1, 2, 1, 2] [1,2,1,2] 是正确的,但序列
[ 1 , 3 , 2 ] [1, 3, 2] [1,3,2] 不是。

给出长度为 n 的序列 [ a 1 , a 2 , … , a n ] [a_1, a_2, \ldots, a_n] [a1,a2,,an]。对于该序列的某个片段 [ a l , a l + 1 , … , a r ] [a_l, a_{l+1}, \ldots, a_r] [al,al+1,,ar], 若该片段的首项为该片段中的最小值,末项为该片段中的最大值,则我们称这是个正确的片段。

对于给定的序列,请求出该序列至少需要被分成多少段,才能使得每个片段均为正确的片段。序列 [ 2 , 3 , 1 , 1 , 5 , 1 ] [2, 3, 1, 1, 5, 1] [2,3,1,1,5,1] 可以分为三个正确的段: [ 2 , 3 ] [2, 3] [2,3] [ 1 , 1 , 5 ] [1, 1, 5] [1,1,5] [ 1 ] [1] [1]

需要编写一个程序,该程序按给定的顺序确定可以划分的最小正确段数。

输入格式

第一行一个整数 n n n

接下来一行 n n n 个数,分别为 a 1 , a 2 , … , a n a_1,a_2,\ldots,a_n a1,a2,,an

输出格式

输出可以划分的最小正确段数。

输入输出样例 #1

输入 #1

5
5 4 3 2 1

输出 #1

5

输入输出样例 #2

输入 #2

4
1 3 2 4

输出 #2

1

输入输出样例 #3

输入 #3

6
2 3 1 1 5 1

输出 #3

3

说明/提示

  • 子任务 1(30 分), 1 ≤ n ≤ 500 1 \leq n \leq 500 1n500
  • 子任务 2(30 分), 1 ≤ n ≤ 5000 1 \leq n \leq 5000 1n5000
  • 子任务 3(40 分), 1 ≤ n ≤ 3 × 1 0 5 1 \leq n \leq3 \times 10^5 1n3×105

对于所有数据, 1 ≤ n ≤ 3 × 1 0 5 1 \leq n \leq3 \times 10^5 1n3×105 1 ≤ a i ≤ 1 0 9 1\leq a_i \leq 10^9 1ai109

单调栈 线段树

大致思路:枚举j,求所有使得nums[ i ⋯ j i\cdots j ij]合法的i。
性质一:k从小到大将nums[k]入栈sta1。当栈顶元素nums[m]>nums[k]出栈。k入栈。
如果m出栈,则 ∀ , j ≥ k \forall,j \ge k ,jk,nums[m ⋯ j ] \cdots j] j]一定非法。因为nums[m]> nums[k]。
性质二:k从小到大将nums[k]入栈sta2。当栈顶元素 ≤ \le nums[k]时,出栈。nums[sta2.top() ⋯ \cdots k-1]都 ≤ \le nums[k]。 ∀ , i ≤ s t a 2. t o p ( ) \forall,i \le sta2.top() ,ista2.top(),nums[ i ⋯ j ] i\cdots j] ij]一定非法。因为sta2.top 大于 nums[j]。
性质三:为了避免处理边界,sta2初始包括一个元素-1。符合以下条件的nums[ i ⋯ j ] i \cdots j] ij]一档合法。
一, i > s t a 2. t o p ( ) i > sta2.top() i>sta2.top()。二,i ∈ s t a 1 \in sta1 sta1
符合条件一,则nums[j]一定是最大值。符合条件二,说明nums[i]是最小值,否则出栈了。
sg[i]记录nums长度为i的前缀的最少段数。如果m从sta1出栈,则sg[m]= INT_MAX/2。
dp[i+1] = sg[sta2.top()+1 ⋯ \cdots i]的最小值+1。

线段树

单点更新 区间查询 静态开点。
回调类型:设置 最小值。

代码

核心代码

#include <iostream>
#include <sstream>
#include <vector>
#include<map>
#include<unordered_map>
#include<set>
#include<unordered_set>
#include<string>
#include<algorithm>
#include<functional>
#include<queue>
#include <stack>
#include<iomanip>
#include<numeric>
#include <math.h>
#include <climits>
#include<assert.h>
#include<cstring>
#include<list>

#include <bitset>
using namespace std;

template<class T1, class T2>
std::istream& operator >> (std::istream& in, pair<T1, T2>& pr) {
	in >> pr.first >> pr.second;
	return in;
}

template<class T1, class T2, class T3 >
std::istream& operator >> (std::istream& in, tuple<T1, T2, T3>& t) {
	in >> get<0>(t) >> get<1>(t) >> get<2>(t);
	return in;
}

template<class T1, class T2, class T3, class T4 >
std::istream& operator >> (std::istream& in, tuple<T1, T2, T3, T4>& t) {
	in >> get<0>(t) >> get<1>(t) >> get<2>(t) >> get<3>(t);
	return in;
}

template<class T1, class T2, class T3, class T4, class T5 >
std::istream& operator >> (std::istream& in, tuple<T1, T2, T3, T4, T5>& t) {
	in >> get<0>(t) >> get<1>(t) >> get<2>(t) >> get<3>(t) >> get<4>(t);
	return in;
}

template<class T1, class T2, class T3, class T4, class T5, class T6 >
std::istream& operator >> (std::istream& in, tuple<T1, T2, T3, T4, T5, T6>& t) {
	in >> get<0>(t) >> get<1>(t) >> get<2>(t) >> get<3>(t) >> get<4>(t) >> get<5>(t);
	return in;
}

template<class T = int>
vector<T> Read() {
	int n;
	cin >> n;
	vector<T> ret(n);
	for (int i = 0; i < n; i++) {
		cin >> ret[i];
	}
	return ret;
}
template<class T = int>
vector<T> ReadNotNum() {
	vector<T> ret;
	T tmp;
	while (cin >> tmp) {
		ret.emplace_back(tmp);
		if ('\n' == cin.get()) { break; }
	}
	return ret;
}

template<class T = int>
vector<T> Read(int n) {
	vector<T> ret(n);
	for (int i = 0; i < n; i++) {
		cin >> ret[i];
	}
	return ret;
}

template<int N = 1'000'000>
class COutBuff
{
public:
	COutBuff() {
		m_p = puffer;
	}
	template<class T>
	void write(T x) {
		int num[28], sp = 0;
		if (x < 0)
			*m_p++ = '-', x = -x;

		if (!x)
			*m_p++ = 48;

		while (x)
			num[++sp] = x % 10, x /= 10;

		while (sp)
			*m_p++ = num[sp--] + 48;
		AuotToFile();
	}
	void writestr(const char* sz) {
		strcpy(m_p, sz);
		m_p += strlen(sz);
		AuotToFile();
	}
	inline void write(char ch)
	{
		*m_p++ = ch;
		AuotToFile();
	}
	inline void ToFile() {
		fwrite(puffer, 1, m_p - puffer, stdout);
		m_p = puffer;
	}
	~COutBuff() {
		ToFile();
	}
private:
	inline void AuotToFile() {
		if (m_p - puffer > N - 100) {
			ToFile();
		}
	}
	char  puffer[N], * m_p;
};

template<int N = 1'000'000>
class CInBuff
{
public:
	inline CInBuff() {}
	inline CInBuff<N>& operator>>(char& ch) {
		FileToBuf();
		ch = *S++;
		return *this;
	}
	inline CInBuff<N>& operator>>(int& val) {
		FileToBuf();
		int x(0), f(0);
		while (!isdigit(*S))
			f |= (*S++ == '-');
		while (isdigit(*S))
			x = (x << 1) + (x << 3) + (*S++ ^ 48);
		val = f ? -x : x; S++;//忽略空格换行		
		return *this;
	}
	inline CInBuff& operator>>(long long& val) {
		FileToBuf();
		long long x(0); int f(0);
		while (!isdigit(*S))
			f |= (*S++ == '-');
		while (isdigit(*S))
			x = (x << 1) + (x << 3) + (*S++ ^ 48);
		val = f ? -x : x; S++;//忽略空格换行
		return *this;
	}
	template<class T1, class T2>
	inline CInBuff& operator>>(pair<T1, T2>& val) {
		*this >> val.first >> val.second;
		return *this;
	}
	template<class T1, class T2, class T3>
	inline CInBuff& operator>>(tuple<T1, T2, T3>& val) {
		*this >> get<0>(val) >> get<1>(val) >> get<2>(val);
		return *this;
	}
	template<class T1, class T2, class T3, class T4>
	inline CInBuff& operator>>(tuple<T1, T2, T3, T4>& val) {
		*this >> get<0>(val) >> get<1>(val) >> get<2>(val) >> get<3>(val);
		return *this;
	}
	template<class T = int>
	inline CInBuff& operator>>(vector<T>& val) {
		int n;
		*this >> n;
		val.resize(n);
		for (int i = 0; i < n; i++) {
			*this >> val[i];
		}
		return *this;
	}
	template<class T = int>
	vector<T> Read(int n) {
		vector<T> ret(n);
		for (int i = 0; i < n; i++) {
			*this >> ret[i];
		}
		return ret;
	}
	template<class T = int>
	vector<T> Read() {
		vector<T> ret;
		*this >> ret;
		return ret;
	}
private:
	inline void FileToBuf() {
		const int canRead = m_iWritePos - (S - buffer);
		if (canRead >= 100) { return; }
		if (m_bFinish) { return; }
		for (int i = 0; i < canRead; i++)
		{
			buffer[i] = S[i];//memcpy出错			
		}
		m_iWritePos = canRead;
		buffer[m_iWritePos] = 0;
		S = buffer;
		int readCnt = fread(buffer + m_iWritePos, 1, N - m_iWritePos, stdin);
		if (readCnt <= 0) { m_bFinish = true; return; }
		m_iWritePos += readCnt;
		buffer[m_iWritePos] = 0;
		S = buffer;
	}
	int m_iWritePos = 0; bool m_bFinish = false;
	char buffer[N + 10], * S = buffer;
};

template<class TSave, class TSet >
class ISegmentTreeCall
{
public:
	virtual void OnUnion(TSave& unionVal, const TSave& leftVal, const TSave& rVal, int leftIndex, int mid, int rIndex) = 0;
};

template<class TSave, class TSet >
class ISingleSegmentTreeCall : public ISegmentTreeCall<TSave, TSet>
{
public:
	virtual void OnUpdateLeaf(TSave& save, int iSaveIndex, const TSet& update) = 0;
};

template<class TSave, class TSet >
class IRangleSegmentTreeCall : public ISingleSegmentTreeCall<TSave, TSet>
{
public:
	virtual void OnUnionSet(TSet& oldBuff, const TSet& newBuff) = 0;
	virtual void OnUpdateBranch(TSave& save, int iLeftIndex, int iRightIndex, const TSet& update) = 0;
};



template<class TSave, class TSet >
class CSegmentTree {
public:
	CSegmentTree(ISegmentTreeCall<TSave, TSet>& call, TSave tDefault)
		:m_call(call), m_tDefault(tDefault) {}
	TSave Query(int left, int r) {
		return Query(left, r, m_tDefault);
	}
	TSave Query(int left, int r, TSave tDefault) {
		TSave ans = tDefault;
		std::function<void(const TSave&, const int&, const int&)> fun = [&](const TSave& cur, const int& leftIndex, const int& rIndex) {
			m_call.OnUnion(ans, ans, cur, left, leftIndex - 1, rIndex);
		};
		Enum(left, r, fun);
		return ans;
	}
	virtual void Enum(int leftIndex, int leftRight, std::function<void(const TSave&, const int&, const int&)>& fun) = 0;
	virtual TSave QueryAll() = 0;
protected:
	ISegmentTreeCall<TSave, TSet>& m_call;
	const TSave m_tDefault;
};


template<class TSave = int, class TSet = int >
class CSetMinSegmentTreeCall :public IRangleSegmentTreeCall <TSave, TSet> {
public:
	virtual void OnUpdateLeaf(TSave& save, int iSaveIndex, const TSet& update)
	{
		save = update;
	}
	virtual void OnUnion(TSave& unionVal, const TSave& leftVal, const TSave& rVal, int leftIndex, int mid, int rIndex) {
		unionVal = min(leftVal, rVal);
	}
	virtual void OnUnionSet(TSet& oldBuff, const TSet& newBuff) {
		oldBuff = newBuff;
	}
	virtual void OnUpdateBranch(TSave& save, int iLeftIndex, int iRightIndex, const TSet& update) {
		save = update;
	}
};

template<class TSave, class TSet >
class CSingeSegmentTree :public CSegmentTree<TSave, TSet>
{
public:
	CSingeSegmentTree(ISingleSegmentTreeCall<TSave, TSet>& call, TSave tDefault)
		:m_call(call), CSegmentTree<TSave, TSet>(call, tDefault) {}
	virtual void Update(int index, TSet update) = 0;
protected:
	ISingleSegmentTreeCall<TSave, TSet>& m_call;
};
template<class TSave, class TSet >
class CSingeTreeSegmentTree : public CSingeSegmentTree<TSave, TSet>
{
protected:
	struct CTreeNode
	{
		TSave data;
		CTreeNode* m_lChild = nullptr, * m_rChild = nullptr;
		~CTreeNode() {
			delete m_lChild; m_lChild = nullptr;
			delete m_rChild; m_rChild = nullptr;
		}
	};
	CTreeNode* m_root;
	const int m_iMinIndex, m_iMaxIndex;
public:
	CSingeTreeSegmentTree(int iMinIndex, int iMaxIndex, ISingleSegmentTreeCall<TSave, TSet>& call, TSave tDefault) :CSingeSegmentTree<TSave, TSet>(call, tDefault)
		, m_iMinIndex(iMinIndex), m_iMaxIndex(iMaxIndex) {
		m_root = CreateNode();
	}
	void Update(int index, TSet update) override {
		if ((index < m_iMinIndex) || (index > m_iMaxIndex)) { return; }
		Update(m_root, m_iMinIndex, m_iMaxIndex, index, update);
	}
	TSave QueryAll() override {
		return m_root->data;
	}
	//void OnQuery(TSave& ans, const TSave& cur, const int& iSaveLeft, const int& iSaveRight);
	void Enum(int iQueryLeft, int iQueryRight, std::function<void(const TSave&, const int&, const int&)>& fun)override {
		if (max(iQueryLeft, m_iMinIndex) > min(iQueryRight, m_iMaxIndex)) { return; }//和根节点没交集
		Enum(m_root, m_iMinIndex, m_iMaxIndex, iQueryLeft, iQueryRight, fun);
	}
	~CSingeTreeSegmentTree() {
		delete m_root;
	}
protected:
	void Enum(CTreeNode* node, int iSaveLeft, int iSaveRight, int iQueryLeft, int iQueryRight, std::function<void(const TSave&, const int&, const int&)>& fun) {
		if ((iQueryLeft <= iSaveLeft) && (iSaveRight <= iQueryRight)) {
			fun(node->data, iSaveLeft, iSaveRight);
			return;
		}
		CreateChilds(node);
		const int mid = iSaveLeft + (iSaveRight - iSaveLeft) / 2;
		if (mid >= iQueryLeft) {
			Enum(node->m_lChild, iSaveLeft, mid, iQueryLeft, iQueryRight, fun);
		}
		if (mid + 1 <= iQueryRight) {
			Enum(node->m_rChild, mid + 1, iSaveRight, iQueryLeft, iQueryRight, fun);
		}
	}
	void Update(CTreeNode* node, int iSaveLeft, int iSaveRight, int iUpdateNO, TSet update) {
		if (iSaveLeft == iSaveRight) {
			CSingeSegmentTree<TSave, TSet>::m_call.OnUpdateLeaf(node->data, iUpdateNO, update);
			return;
		}
		CreateChilds(node);
		const int mid = iSaveLeft + (iSaveRight - iSaveLeft) / 2;
		if (iUpdateNO <= mid)
		{
			Update(node->m_lChild, iSaveLeft, mid, iUpdateNO, update);
		}
		else {
			Update(node->m_rChild, mid + 1, iSaveRight, iUpdateNO, update);
		}
		CSingeSegmentTree<TSave, TSet>::m_call.OnUnion(node->data, node->m_lChild->data, node->m_rChild->data, iSaveLeft, mid, iSaveRight);
	}
	CTreeNode* CreateNode() {
		CTreeNode* node = new CTreeNode;
		node->data = this->m_tDefault;
		return node;
	}
	void CreateChilds(CTreeNode* node) {
		if (nullptr != node->m_lChild) { return; }
		node->m_lChild = CreateNode();
		node->m_rChild = CreateNode();
	}
};

template<class TSave, class TSet >
class CSingleVectorSegmentTree : public CSingeSegmentTree<TSave, TSet>
{
public:
	CSingleVectorSegmentTree(int iEleSize, ISingleSegmentTreeCall<TSave, TSet>& call, TSave tDefault) :
		m_iEleSize(iEleSize), CSingeSegmentTree<TSave, TSet>(call, tDefault), m_save(iEleSize * 4, tDefault) {

	}
	void Update(int index, TSet update) override {
		if ((index < 0) || (index >= m_iEleSize)) { return; }
		Update(1, 0, m_iEleSize - 1, index, update);
	}
	TSave QueryAll() override {
		return m_save[1];
	}
	virtual void Enum(int iQueryLeft, int iQueryRight, std::function<void(const TSave&, const int&, const int&)>& fun) override {
		if (max(iQueryLeft, 0) > min(iQueryRight, m_iEleSize - 1)) { return; }//和根节点没交集
		Enum(1, 0, m_iEleSize - 1, iQueryLeft, iQueryRight, fun);
	}
	void swap(CSingleVectorSegmentTree& o) {
		m_save.swap(o.m_save);
	}
protected:
	const int m_iEleSize;
	/*	void Init(std::function<void(TSave&, const int&)> fun, int iNodeNO, int iSaveLeft, int iSaveRight)
		{
			if (iSaveLeft == iSaveRight) {
				fun(m_save[iNodeNO], iSaveLeft);
				return;
			}
			const int mid = iSaveLeft + (iSaveRight - iSaveLeft) / 2;
			Init(fun, iNodeNO * 2, iSaveLeft, mid);
			Init(fun, iNodeNO * 2 + 1, mid + 1, iSaveRight);
			this->OnUpdateParent(m_save[iNodeNO], m_save[iNodeNO * 2], m_save[iNodeNO * 2 + 1], iSaveLeft, iSaveRight);
		}*/
	void Enum(int iNodeNO, int iSaveLeft, int iSaveRight, int iQueryLeft, int iQueryRight, std::function<void(const TSave&, const int&, const int&)>& fun) {
		if ((iSaveLeft >= iQueryLeft) && (iSaveRight <= iQueryRight)) {
			fun(m_save[iNodeNO], iSaveLeft, iSaveRight);
			return;
		}
		const int mid = iSaveLeft + (iSaveRight - iSaveLeft) / 2;
		if (mid >= iQueryLeft) {
			Enum(iNodeNO * 2, iSaveLeft, mid, iQueryLeft, iQueryRight, fun);
		}
		if (mid + 1 <= iQueryRight) {
			Enum(iNodeNO * 2 + 1, mid + 1, iSaveRight, iQueryLeft, iQueryRight, fun);
		}
	}
	void Update(int iNodeNO, int iSaveLeft, int iSaveRight, int iUpdateNO, TSet update) {
		if (iSaveLeft == iSaveRight)
		{
			CSingeSegmentTree<TSave, TSet>::m_call.OnUpdateLeaf(m_save[iNodeNO], iSaveLeft, update);
			return;
		}
		const int mid = iSaveLeft + (iSaveRight - iSaveLeft) / 2;
		if (iUpdateNO <= mid) {
			Update(iNodeNO * 2, iSaveLeft, mid, iUpdateNO, update);
		}
		else {
			Update(iNodeNO * 2 + 1, mid + 1, iSaveRight, iUpdateNO, update);
		}
		CSegmentTree<TSave, TSet>::m_call.OnUnion(m_save[iNodeNO], m_save[iNodeNO * 2], m_save[iNodeNO * 2 + 1], iSaveLeft, mid, iSaveRight);
	}
	vector<TSave> m_save;
};

class Solution {
public:
	int Ans(vector<int>& nums) {
		const int N = nums.size();
		vector<int> sta1 = { -1 }, sta2 = { -1 };
		CSetMinSegmentTreeCall<int, int> call;
		CSingleVectorSegmentTree<int, int> sg(N + 1, call, INT_MAX / 2);
		sg.Update(0, 0);
		for (int i = 0;i < N;i++) {
			while ((-1 != sta1.back()) && (nums[sta1.back()] > nums[i])) {
				sg.Update(sta1.back(), INT_MAX / 2);
				sta1.pop_back();
			}
			while ((-1 != sta2.back()) && (nums[sta2.back()] <= nums[i])) {
				sta2.pop_back();
			}
			const int cur = sg.Query(sta2.back() + 1, i) + 1;
			sg.Update(i + 1, cur);
			sta1.emplace_back(i);
			sta2.emplace_back(i);
		}
		return sg.Query(N, N);
	}
};

int main() {
#ifdef _DEBUG
	freopen("a.in", "r", stdin);
#endif // DEBUG		
	ios::sync_with_stdio(0);cin.tie(nullptr);cout.tie(nullptr);	
	auto nums = Read<int>();	
#ifdef _DEBUG		
	/*printf("T=%d,", T);*/
	Out(nums, "nums=");
	//Out(que, "que=");
#endif // DEBUG	
	auto res = Solution().Ans(nums);
	cout << res << "\r\n";
	return 0;
}

单元测试

vector<int> nums;
		TEST_METHOD(TestMethod11)
		{
			nums = { 5,4,3,2,1 };
			auto res = Solution().Ans(nums);
			AssertEx(5, res);
		}
		TEST_METHOD(TestMethod12)
		{
			nums = { 1,3,2,4 };
			auto res = Solution().Ans(nums);
			AssertEx(1, res);
		}

		TEST_METHOD(TestMethod13)
		{
			nums = { 2,3,1,1,5,1 };
			auto res = Solution().Ans(nums);
			AssertEx(3, res);
		}

扩展阅读

我想对大家说的话
工作中遇到的问题,可以按类别查阅鄙人的算法文章,请点击《算法与数据汇总》。
学习算法:按章节学习《喜缺全书算法册》,大量的题目和测试用例,打包下载。重视操作
有效学习:明确的目标 及时的反馈 拉伸区(难度合适) 专注
员工说:技术至上,老板不信;投资人的代表说:技术至上,老板会信。
闻缺陷则喜(喜缺)是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛
失败+反思=成功 成功+反思=成功

视频课程

先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。