LeetCode每日一题(852. Peak Index in a Mountain Array)

发布于:2022-11-01 ⋅ 阅读:(278) ⋅ 点赞:(0)

An array arr a mountain if the following properties hold:

arr.length >= 3
There exists some i with 0 < i < arr.length - 1 such that:
arr[0] < arr[1] < … < arr[i - 1] < arr[i]
arr[i] > arr[i + 1] > … > arr[arr.length - 1]
Given a mountain array arr, return the index i such that arr[0] < arr[1] < … < arr[i - 1] < arr[i] > arr[i + 1] > … > arr[arr.length - 1].

You must solve it in O(log(arr.length)) time complexity.

Example 1:

Input: arr = [0,1,0]
Output: 1

Example 2:

Input: arr = [0,2,1,0]
Output: 1

Example 3:

Input: arr = [0,10,5,2]
Output: 1

Constraints:

  • 3 <= arr.length <= 105
  • 0 <= arr[i] <= 106
  • arr is guaranteed to be a mountain array.

二分搜索, 一共就三种情况:

  1. left < middle < right
  2. left < midele > right
  3. left > middle > right

情况 1, 3, 我们只需要往大的方向去找即可, 情况 2,我们要对比左半部分和右半部分的值,取大的即可。注意两部分对比的时候要包括中间点的值, 调试的时候发现的, 至于为什么,现在也没想明白



impl Solution {
    fn bisearch(arr: &Vec<i32>, l: usize, r: usize) -> usize {
        if l == r {
            return l;
        }
        let m = (l + r) / 2;
        if arr[m] > arr[l] && arr[m] > arr[r] {
            let left = Solution::bisearch(arr, l, m);
            let right = Solution::bisearch(arr, m + 1, r);
            let max = arr[m].max(arr[left]).max(arr[right]);
            if max == arr[m] {
                return m;
            }
            if max == arr[left] {
                return left;
            }
            return right;
        }
        if arr[l] < arr[m] && arr[m] < arr[r] {
            return Solution::bisearch(arr, m, r);
        }
        Solution::bisearch(arr, l, m)
    }
    pub fn peak_index_in_mountain_array(arr: Vec<i32>) -> i32 {
        Solution::bisearch(&arr, 0, arr.len() - 1) as i32
    }
}
本文含有隐藏内容,请 开通VIP 后查看

网站公告

今日签到

点亮在社区的每一天
去签到