单向链表及基本操作

发布于:2022-12-02 ⋅ 阅读:(135) ⋅ 点赞:(0)

单向链表

链表的介绍

链表在内存中的存储
在这里插入图片描述
特点

  • 链表是以节点的方式来存储,是链式存储
  • 每个节点包含 data 域 和 next 域。next域用来指向下一个节点
  • 链表的各个节点不一定是连续存储的
  • 链表分带头节点的链表和没有头节点的链表,根据实际的需求来确定

带头结点的逻辑示意图
在这里插入图片描述

实现思路

创建(添加)

  • 先创建一个Head头节点,表示单链表的头

  • 后面我们每添加一个节点,就放在链表的最后
    遍历

  • 通过一个辅助变量,来遍历整个链表

无序插入

  • 当不考虑编号顺序时,找到当前链表的最后节点
  • 将最后这个节点的next 指向 新的节点

有序插入

  • 先遍历链表,找到应该插入的位置
  • 要插入的节点的next指向插入位置的后一个节点
  • 插入位置的前一个节点的next指向要插入节点

根据某个属性节点修改值

  • 根据传入节点信息,寻找含有信息的节点进行修改

删除某个节点

  • 先遍历节点,找到要删除节点的前一个节点
  • 进行删除操作

查找单链表中的倒数第k个结点

  • 编写一个方法,接收head节点,同时接收一个index
  • index 表示是倒数第index个节点
  • 遍历链表,求出链表的有效长度size(不算头结点)
  • 得到size 后,我们从链表的第一个开始遍历 (size-index)个
  • 如果找到了,则返回该节点,否则返回null

翻转链表
请添加图片描述

  • 创建一个新的头结点,作为新链表的头
  • 从头遍历旧链表,将遍历到的节点插入新链表的头结点之后
  • 注意需要用到两个暂存节点
    • 一个用来保存正在遍历的节点
    • 一个用来保存正在遍历的节点请添加图片描述

请添加图片描述

请添加图片描述

请添加图片描述

请添加图片描述
逆序打印单链表

  • 方式1: 先将单链表进行反转操作,然后再遍历即可,这样的做的问题是会破坏原来的单链表的结构,不建议
  • 方式2:可以利用栈这个数据结构,将各个节点压入到栈中,然后利用栈的先进后出的特点,就实现了逆序打印的效果.

完整代码如下:


import java.util.Stack;
public class SingleLinkedListDemo {
	public static void main(String[] args) {
		//进行测试
		//先创建节点
		HeroNode hero1 = new HeroNode(1, "宋江", "及时雨");
		HeroNode hero2 = new HeroNode(2, "卢俊义", "玉麒麟");
		HeroNode hero3 = new HeroNode(3, "吴用", "智多星");
		HeroNode hero4 = new HeroNode(4, "林冲", "豹子头");
		
		//创建要给链表
		SingleLinkedList singleLinkedList = new SingleLinkedList();
		
		
		//加入
		singleLinkedList.add(hero1);
		singleLinkedList.add(hero4);
		singleLinkedList.add(hero2);
		singleLinkedList.add(hero3);

		// 测试一下单链表的反转功能
		System.out.println("原来链表的情况~~");
		singleLinkedList.list();

//		System.out.println("反转单链表~~");
//		reversetList(singleLinkedList.getHead());
//		singleLinkedList.list();
//
		System.out.println("测试逆序打印单链表, 没有改变链表的结构~~");
		reversePrint(singleLinkedList.getHead());

/*
		//加入按照编号的顺序
		singleLinkedList.addByOrder(hero1);
		singleLinkedList.addByOrder(hero4);
		singleLinkedList.addByOrder(hero2);
		singleLinkedList.addByOrder(hero3);

		
		//显示一把
		singleLinkedList.list();
		
		//测试修改节点的代码
//		HeroNode newHeroNode = new HeroNode(2, "小卢", "玉麒麟~~");
//		singleLinkedList.update(newHeroNode);
//		System.out.println("修改后的链表:");
//		singleLinkedList.list();

		

		
		//删除一个节点
//		singleLinkedList.del(1);
		singleLinkedList.del(4);
//		System.out.println("删除后的链表情况~~");
//		singleLinkedList.list();
		
		//测试一下 求单链表中有效节点的个数
		System.out.println("有效的节点个数=" + getLength(singleLinkedList.getHead()));//2
		
		//测试一下看看是否得到了倒数第K个节点
		HeroNode res = findLastIndexNode(singleLinkedList.getHead(), 3);
		System.out.println("res=" + res);
*/
		
	}
	
	//方式2:
	//可以利用栈这个数据结构,将各个节点压入到栈中,然后利用栈的先进后出的特点,就实现了逆序打印的效果
	public static void reversePrint(HeroNode head) {
		if(head.next == null) {
			return;//空链表,不能打印
		}
		//创建要给一个栈,将各个节点压入栈
		Stack<HeroNode> stack = new Stack<HeroNode>();
		HeroNode cur = head.next;
		//将链表的所有节点压入栈
		while(cur != null) {
			stack.push(cur);
			cur = cur.next; //cur后移,这样就可以压入下一个节点
		}
		//将栈中的节点进行打印,pop 出栈
		while (stack.size() > 0) {
			System.out.println(stack.pop()); //stack的特点是先进后出
		}
	}
	
	//将单链表反转
	public static void reversetList(HeroNode head) {
		//如果当前链表为空,或者只有一个节点,无需反转,直接返回
		if(head.next == null || head.next.next == null) {
			return ;
		}
		
		//定义一个辅助的指针(变量),帮助我们遍历原来的链表
		HeroNode cur = head.next;
		HeroNode next = null;// 指向当前节点[cur]的下一个节点
		HeroNode reverseHead = new HeroNode(0, "", "");
		//遍历原来的链表,每遍历一个节点,就将其取出,并放在新的链表reverseHead 的最前端
		//动脑筋
		while(cur != null) { 
			next = cur.next;//先暂时保存当前节点的下一个节点,因为后面需要使用
			cur.next = reverseHead.next;//将cur的下一个节点指向新的链表的最前端
			reverseHead.next = cur; //将cur 连接到新的链表上
			cur = next;//让cur后移
		}
		//将head.next 指向 reverseHead.next , 实现单链表的反转
		head.next = reverseHead.next;
	}
	
	//查找单链表中的倒数第k个结点 
	public static HeroNode findLastIndexNode(HeroNode head, int index) {
		//判断如果链表为空,返回null
		if(head.next == null) {
			return null;//没有找到
		}
		//第一个遍历得到链表的长度(节点个数)
		int size = getLength(head);
		//第二次遍历  size-index 位置,就是我们倒数的第K个节点
		//先做一个index的校验
		if(index <=0 || index > size) {
			return null; 
		}
		//定义给辅助变量, for 循环定位到倒数的index
		HeroNode cur = head.next; //3 // 3 - 1 = 2
		for(int i =0; i< size - index; i++) {
			cur = cur.next;
		}
		return cur;
		
	}
	
	//方法:获取到单链表的节点的个数(如果是带头结点的链表,需求不统计头节点)
	/**
	 * 
	 * @param head 链表的头节点
	 * @return 返回的就是有效节点的个数
	 */
	public static int getLength(HeroNode head) {
		if(head.next == null) { //空链表
			return 0;
		}
		int length = 0;
		//定义一个辅助的变量, 这里我们没有统计头节点
		HeroNode cur = head.next;
		while(cur != null) {
			length++;
			cur = cur.next; //遍历
		}
		return length;
	}

}


//定义SingleLinkedList 管理我们的英雄
class SingleLinkedList {
	//先初始化一个头节点, 头节点不要动, 不存放具体的数据
	private HeroNode head = new HeroNode(0, "", "");
	
	
	//返回头节点
	public HeroNode getHead() {
		return head;
	}

	//添加节点到单向链表
	//思路,当不考虑编号顺序时
	//1. 找到当前链表的最后节点
	//2. 将最后这个节点的next 指向 新的节点
	public void add(HeroNode heroNode) {
		
		//因为head节点不能动,因此我们需要一个辅助变量 temp
		HeroNode temp = head;
		//遍历链表,找到最后
		while(true) {
			//找到链表的最后
			if(temp.next == null) {//
				break;
			}
			//如果没有找到最后, 将将temp后移
			temp = temp.next;
		}
		//当退出while循环时,temp就指向了链表的最后
		//将最后这个节点的next 指向 新的节点
		temp.next = heroNode;
	}
	
	//第二种方式在添加英雄时,根据排名将英雄插入到指定位置
	//(如果有这个排名,则添加失败,并给出提示)
	public void addByOrder(HeroNode heroNode) {
		//因为头节点不能动,因此我们仍然通过一个辅助指针(变量)来帮助找到添加的位置
		//因为单链表,因为我们找的temp 是位于 添加位置的前一个节点,否则插入不了
		HeroNode temp = head;
		boolean flag = false; // flag标志添加的编号是否存在,默认为false
		while(true) {
			if(temp.next == null) {//说明temp已经在链表的最后
				break; //
			} 
			if(temp.next.no > heroNode.no) { //位置找到,就在temp的后面插入
				break;
			} else if (temp.next.no == heroNode.no) {//说明希望添加的heroNode的编号已然存在
				
				flag = true; //说明编号存在
				break;
			}
			temp = temp.next; //后移,遍历当前链表
		}
		//判断flag 的值
		if(flag) { //不能添加,说明编号存在
			System.out.printf("准备插入的英雄的编号 %d 已经存在了, 不能加入\n", heroNode.no);
		} else {
			//插入到链表中, temp的后面
			heroNode.next = temp.next;
			temp.next = heroNode;
		}
	}

	//修改节点的信息, 根据no编号来修改,即no编号不能改.
	//说明
	//1. 根据 newHeroNode 的 no 来修改即可
	public void update(HeroNode newHeroNode) {
		//判断是否空
		if(head.next == null) {
			System.out.println("链表为空~");
			return;
		}
		//找到需要修改的节点, 根据no编号
		//定义一个辅助变量
		HeroNode temp = head.next;
		boolean flag = false; //表示是否找到该节点
		while(true) {
			if (temp == null) {
				break; //已经遍历完链表
			}
			if(temp.no == newHeroNode.no) {
				//找到
				flag = true;
				break;
			}
			temp = temp.next;
		}
		//根据flag 判断是否找到要修改的节点
		if(flag) {
			temp.name = newHeroNode.name;
			temp.nickname = newHeroNode.nickname;
		} else { //没有找到
			System.out.printf("没有找到 编号 %d 的节点,不能修改\n", newHeroNode.no);
		}
	}
	
	//删除节点
	//思路
	//1. head 不能动,因此我们需要一个temp辅助节点找到待删除节点的前一个节点
	//2. 说明我们在比较时,是temp.next.no 和  需要删除的节点的no比较
	public void del(int no) {
		HeroNode temp = head;
		boolean flag = false; // 标志是否找到待删除节点的
		while(true) {
			if(temp.next == null) { //已经到链表的最后
				break;
			}
			if(temp.next.no == no) {
				//找到的待删除节点的前一个节点temp
				flag = true;
				break;
			}
			temp = temp.next; //temp后移,遍历
		}
		//判断flag
		if(flag) { //找到
			//可以删除
			temp.next = temp.next.next;
		}else {
			System.out.printf("要删除的 %d 节点不存在\n", no);
		}
	}
	
	//显示链表[遍历]
	public void list() {
		//判断链表是否为空
		if(head.next == null) {
			System.out.println("链表为空");
			return;
		}
		//因为头节点,不能动,因此我们需要一个辅助变量来遍历
		HeroNode temp = head.next;
		while(true) {
			//判断是否到链表最后
			if(temp == null) {
				break;
			}
			//输出节点的信息
			System.out.println(temp);
			//将temp后移, 一定小心
			temp = temp.next;
		}
	}
}

//定义HeroNode , 每个HeroNode 对象就是一个节点
class HeroNode {
	public int no;
	public String name;
	public String nickname;
	public HeroNode next; //指向下一个节点
	//构造器
	public HeroNode(int no, String name, String nickname) {
		this.no = no;
		this.name = name;
		this.nickname = nickname;
	}
	//为了显示方法,我们重新toString
	@Override
	public String toString() {
		return "HeroNode [no=" + no + ", name=" + name + ", nickname=" + nickname + "]";
	}
	
}


网站公告

今日签到

点亮在社区的每一天
去签到