大数据培训课程RDD的创建

发布于:2022-12-24 ⋅ 阅读:(405) ⋅ 点赞:(0)

RDD的创建

在Spark中创建RDD的创建方式可以分为三种:从集合中创建RDD;从外部存储创建RDD;从其他RDD创建。

1 从集合中创建

从集合中创建RDD,Spark主要提供了两种函数:parallelize和makeRDD

1)使用parallelize()从集合创建

scala> val rdd = sc.parallelize(Array(1,2,3,4,5,6,7,8))

rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:24

2)使用makeRDD()从集合创建

scala> val rdd1 = sc.makeRDD(Array(1,2,3,4,5,6,7,8))

rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[1] at makeRDD at <console>:24

2 由外部存储系统的数据集创建

包括本地的文件系统,还有所有Hadoop支持的数据集,比如HDFS、Cassandra、HBase等,我们会在第4章详细介绍。

scala> val rdd2= sc.textFile(“hdfs://hadoop102:9000/RELEASE”)

rdd2: org.apache.spark.rdd.RDD[String] = hdfs://hadoop102:9000/RELEASE MapPartitionsRDD[4] at textFile at <console>:24

想要了解跟多关于大数据培训课程内容欢迎关注尚硅谷大数据培训,尚硅谷除了这些技术文章外还有免费的高质量大数据培训课程视频供广大学员下载学习。 


网站公告

今日签到

点亮在社区的每一天
去签到

热门文章