三:OpenCV图片颜色通道数据转换

发布于:2023-01-25 ⋅ 阅读:(924) ⋅ 点赞:(0)

对图片进行操作时经常会涉及到不同通道数据提取,在OpenCV中提供了很多比较便捷的操作函数,本文涉及函数如下:

1.cvtColor 颜色空间转换
2.convertTo 图片数据类型转换
3.split 图片通道分离
4.merge 图片不同通道合并
5.extractChannel 抽取图片某一个通道
6.applyColorMap 灰度图转伪彩色图

原文:OpenCV图片颜色通道数据转换

1.函数cvtColor

定义:

void cvtColor( InputArray src, OutputArray dst, int code, int dstCn = 0 );
def cvtColor(src, code, dst=None, dstCn=None)

作用:图像颜色转换。
参数:
src:输入图像
dst:输出图像
dstCn:转换后目标图像通道,通常采用默认值
code:转换类型,可以取下列枚举值

enum ColorConversionCodes {
    COLOR_BGR2BGRA     = 0, //!< add alpha channel to RGB or BGR image
    COLOR_RGB2RGBA     = COLOR_BGR2BGRA,
    COLOR_BGRA2BGR     = 1, //!< remove alpha channel from RGB or BGR image
    COLOR_RGBA2RGB     = COLOR_BGRA2BGR,
    COLOR_BGR2RGBA     = 2, //!< convert between RGB and BGR color spaces (with or without alpha channel)
    COLOR_RGB2BGRA     = COLOR_BGR2RGBA,
    COLOR_RGBA2BGR     = 3,
    COLOR_BGRA2RGB     = COLOR_RGBA2BGR,
    COLOR_BGR2RGB      = 4,
    COLOR_RGB2BGR      = COLOR_BGR2RGB,
    COLOR_BGRA2RGBA    = 5,
    COLOR_RGBA2BGRA    = COLOR_BGRA2RGBA,
    COLOR_BGR2GRAY     = 6, //!< convert between RGB/BGR and grayscale, @ref color_convert_rgb_gray "color conversions"
    COLOR_RGB2GRAY     = 7,
    COLOR_GRAY2BGR     = 8,
    COLOR_GRAY2RGB     = COLOR_GRAY2BGR,
    COLOR_GRAY2BGRA    = 9,
    COLOR_GRAY2RGBA    = COLOR_GRAY2BGRA,
    COLOR_BGRA2GRAY    = 10,
    COLOR_RGBA2GRAY    = 11,
    COLOR_BGR2BGR565   = 12, //!< convert between RGB/BGR and BGR565 (16-bit images)
    COLOR_RGB2BGR565   = 13,
    COLOR_BGR5652BGR   = 14,
    COLOR_BGR5652RGB   = 15,
    COLOR_BGRA2BGR565  = 16,
    COLOR_RGBA2BGR565  = 17,
    COLOR_BGR5652BGRA  = 18,
    COLOR_BGR5652RGBA  = 19,
    COLOR_GRAY2BGR565  = 20, //!< convert between grayscale to BGR565 (16-bit images)
    COLOR_BGR5652GRAY  = 21,
    COLOR_BGR2BGR555   = 22,  //!< convert between RGB/BGR and BGR555 (16-bit images)
    COLOR_RGB2BGR555   = 23,
    COLOR_BGR5552BGR   = 24,
    COLOR_BGR5552RGB   = 25,
    COLOR_BGRA2BGR555  = 26,
    COLOR_RGBA2BGR555  = 27,
    COLOR_BGR5552BGRA  = 28,
    COLOR_BGR5552RGBA  = 29,
    COLOR_GRAY2BGR555  = 30, //!< convert between grayscale and BGR555 (16-bit images)
    COLOR_BGR5552GRAY  = 31,
    COLOR_BGR2XYZ      = 32, //!< convert RGB/BGR to CIE XYZ, @ref color_convert_rgb_xyz "color conversions"
    COLOR_RGB2XYZ      = 33,
    COLOR_XYZ2BGR      = 34,
    COLOR_XYZ2RGB      = 35,
    COLOR_BGR2YCrCb    = 36, //!< convert RGB/BGR to luma-chroma (aka YCC), @ref color_convert_rgb_ycrcb "color conversions"
    COLOR_RGB2YCrCb    = 37,
    COLOR_YCrCb2BGR    = 38,
    COLOR_YCrCb2RGB    = 39,
    COLOR_BGR2HSV      = 40, //!< convert RGB/BGR to HSV (hue saturation value), @ref color_convert_rgb_hsv "color conversions"
    COLOR_RGB2HSV      = 41,
    COLOR_BGR2Lab      = 44, //!< convert RGB/BGR to CIE Lab, @ref color_convert_rgb_lab "color conversions"
    COLOR_RGB2Lab      = 45,
    COLOR_BGR2Luv      = 50, //!< convert RGB/BGR to CIE Luv, @ref color_convert_rgb_luv "color conversions"
    COLOR_RGB2Luv      = 51,
    COLOR_BGR2HLS      = 52, //!< convert RGB/BGR to HLS (hue lightness saturation), @ref color_convert_rgb_hls "color conversions"
    COLOR_RGB2HLS      = 53,
    COLOR_HSV2BGR      = 54, //!< backward conversions to RGB/BGR
    COLOR_HSV2RGB      = 55,
    COLOR_Lab2BGR      = 56,
    COLOR_Lab2RGB      = 57,
    COLOR_Luv2BGR      = 58,
    COLOR_Luv2RGB      = 59,
    COLOR_HLS2BGR      = 60,
    COLOR_HLS2RGB      = 61,
    COLOR_BGR2HSV_FULL = 66,
    COLOR_RGB2HSV_FULL = 67,
    COLOR_BGR2HLS_FULL = 68,
    COLOR_RGB2HLS_FULL = 69,
    COLOR_HSV2BGR_FULL = 70,
    COLOR_HSV2RGB_FULL = 71,
    COLOR_HLS2BGR_FULL = 72,
    COLOR_HLS2RGB_FULL = 73,
    COLOR_LBGR2Lab     = 74,
    COLOR_LRGB2Lab     = 75,
    COLOR_LBGR2Luv     = 76,
    COLOR_LRGB2Luv     = 77,
    COLOR_Lab2LBGR     = 78,
    COLOR_Lab2LRGB     = 79,
    COLOR_Luv2LBGR     = 80,
    COLOR_Luv2LRGB     = 81,
    COLOR_BGR2YUV      = 82, //!< convert between RGB/BGR and YUV
    COLOR_RGB2YUV      = 83,
    COLOR_YUV2BGR      = 84,
    COLOR_YUV2RGB      = 85,
    //! YUV 4:2:0 family to RGB
    COLOR_YUV2RGB_NV12  = 90,
    COLOR_YUV2BGR_NV12  = 91,
    COLOR_YUV2RGB_NV21  = 92,
    COLOR_YUV2BGR_NV21  = 93,
    COLOR_YUV420sp2RGB  = COLOR_YUV2RGB_NV21,
    COLOR_YUV420sp2BGR  = COLOR_YUV2BGR_NV21,
    COLOR_YUV2RGBA_NV12 = 94,
    COLOR_YUV2BGRA_NV12 = 95,
    COLOR_YUV2RGBA_NV21 = 96,
    COLOR_YUV2BGRA_NV21 = 97,
    COLOR_YUV420sp2RGBA = COLOR_YUV2RGBA_NV21,
    COLOR_YUV420sp2BGRA = COLOR_YUV2BGRA_NV21,
    COLOR_YUV2RGB_YV12  = 98,
    COLOR_YUV2BGR_YV12  = 99,
    COLOR_YUV2RGB_IYUV  = 100,
    COLOR_YUV2BGR_IYUV  = 101,
    COLOR_YUV2RGB_I420  = COLOR_YUV2RGB_IYUV,
    COLOR_YUV2BGR_I420  = COLOR_YUV2BGR_IYUV,
    COLOR_YUV420p2RGB   = COLOR_YUV2RGB_YV12,
    COLOR_YUV420p2BGR   = COLOR_YUV2BGR_YV12,
    COLOR_YUV2RGBA_YV12 = 102,
    COLOR_YUV2BGRA_YV12 = 103,
    COLOR_YUV2RGBA_IYUV = 104,
    COLOR_YUV2BGRA_IYUV = 105,
    COLOR_YUV2RGBA_I420 = COLOR_YUV2RGBA_IYUV,
    COLOR_YUV2BGRA_I420 = COLOR_YUV2BGRA_IYUV,
    COLOR_YUV420p2RGBA  = COLOR_YUV2RGBA_YV12,
    COLOR_YUV420p2BGRA  = COLOR_YUV2BGRA_YV12,
    COLOR_YUV2GRAY_420  = 106,
    COLOR_YUV2GRAY_NV21 = COLOR_YUV2GRAY_420,
    COLOR_YUV2GRAY_NV12 = COLOR_YUV2GRAY_420,
    COLOR_YUV2GRAY_YV12 = COLOR_YUV2GRAY_420,
    COLOR_YUV2GRAY_IYUV = COLOR_YUV2GRAY_420,
    COLOR_YUV2GRAY_I420 = COLOR_YUV2GRAY_420,
    COLOR_YUV420sp2GRAY = COLOR_YUV2GRAY_420,
    COLOR_YUV420p2GRAY  = COLOR_YUV2GRAY_420,
    //! YUV 4:2:2 family to RGB
    COLOR_YUV2RGB_UYVY = 107,
    COLOR_YUV2BGR_UYVY = 108,
    //COLOR_YUV2RGB_VYUY = 109,
    //COLOR_YUV2BGR_VYUY = 110,
    COLOR_YUV2RGB_Y422 = COLOR_YUV2RGB_UYVY,
    COLOR_YUV2BGR_Y422 = COLOR_YUV2BGR_UYVY,
    COLOR_YUV2RGB_UYNV = COLOR_YUV2RGB_UYVY,
    COLOR_YUV2BGR_UYNV = COLOR_YUV2BGR_UYVY,
    COLOR_YUV2RGBA_UYVY = 111,
    COLOR_YUV2BGRA_UYVY = 112,
    //COLOR_YUV2RGBA_VYUY = 113,
    //COLOR_YUV2BGRA_VYUY = 114,
    COLOR_YUV2RGBA_Y422 = COLOR_YUV2RGBA_UYVY,
    COLOR_YUV2BGRA_Y422 = COLOR_YUV2BGRA_UYVY,
    COLOR_YUV2RGBA_UYNV = COLOR_YUV2RGBA_UYVY,
    COLOR_YUV2BGRA_UYNV = COLOR_YUV2BGRA_UYVY,
    COLOR_YUV2RGB_YUY2 = 115,
    COLOR_YUV2BGR_YUY2 = 116,
    COLOR_YUV2RGB_YVYU = 117,
    COLOR_YUV2BGR_YVYU = 118,
    COLOR_YUV2RGB_YUYV = COLOR_YUV2RGB_YUY2,
    COLOR_YUV2BGR_YUYV = COLOR_YUV2BGR_YUY2,
    COLOR_YUV2RGB_YUNV = COLOR_YUV2RGB_YUY2,
    COLOR_YUV2BGR_YUNV = COLOR_YUV2BGR_YUY2,
    COLOR_YUV2RGBA_YUY2 = 119,
    COLOR_YUV2BGRA_YUY2 = 120,
    COLOR_YUV2RGBA_YVYU = 121,
    COLOR_YUV2BGRA_YVYU = 122,
    COLOR_YUV2RGBA_YUYV = COLOR_YUV2RGBA_YUY2,
    COLOR_YUV2BGRA_YUYV = COLOR_YUV2BGRA_YUY2,
    COLOR_YUV2RGBA_YUNV = COLOR_YUV2RGBA_YUY2,
    COLOR_YUV2BGRA_YUNV = COLOR_YUV2BGRA_YUY2,
    COLOR_YUV2GRAY_UYVY = 123,
    COLOR_YUV2GRAY_YUY2 = 124,
    //CV_YUV2GRAY_VYUY    = CV_YUV2GRAY_UYVY,
    COLOR_YUV2GRAY_Y422 = COLOR_YUV2GRAY_UYVY,
    COLOR_YUV2GRAY_UYNV = COLOR_YUV2GRAY_UYVY,
    COLOR_YUV2GRAY_YVYU = COLOR_YUV2GRAY_YUY2,
    COLOR_YUV2GRAY_YUYV = COLOR_YUV2GRAY_YUY2,
    COLOR_YUV2GRAY_YUNV = COLOR_YUV2GRAY_YUY2,
    //! alpha premultiplication
    COLOR_RGBA2mRGBA    = 125,
    COLOR_mRGBA2RGBA    = 126,
    //! RGB to YUV 4:2:0 family
    COLOR_RGB2YUV_I420  = 127,
    COLOR_BGR2YUV_I420  = 128,
    COLOR_RGB2YUV_IYUV  = COLOR_RGB2YUV_I420,
    COLOR_BGR2YUV_IYUV  = COLOR_BGR2YUV_I420,
    COLOR_RGBA2YUV_I420 = 129,
    COLOR_BGRA2YUV_I420 = 130,
    COLOR_RGBA2YUV_IYUV = COLOR_RGBA2YUV_I420,
    COLOR_BGRA2YUV_IYUV = COLOR_BGRA2YUV_I420,
    COLOR_RGB2YUV_YV12  = 131,
    COLOR_BGR2YUV_YV12  = 132,
    COLOR_RGBA2YUV_YV12 = 133,
    COLOR_BGRA2YUV_YV12 = 134,
    //! Demosaicing
    COLOR_BayerBG2BGR = 46,
    COLOR_BayerGB2BGR = 47,
    COLOR_BayerRG2BGR = 48,
    COLOR_BayerGR2BGR = 49,
    COLOR_BayerBG2RGB = COLOR_BayerRG2BGR,
    COLOR_BayerGB2RGB = COLOR_BayerGR2BGR,
    COLOR_BayerRG2RGB = COLOR_BayerBG2BGR,
    COLOR_BayerGR2RGB = COLOR_BayerGB2BGR,
    COLOR_BayerBG2GRAY = 86,
    COLOR_BayerGB2GRAY = 87,
    COLOR_BayerRG2GRAY = 88,
    COLOR_BayerGR2GRAY = 89,
    //! Demosaicing using Variable Number of Gradients
    COLOR_BayerBG2BGR_VNG = 62,
    COLOR_BayerGB2BGR_VNG = 63,
    COLOR_BayerRG2BGR_VNG = 64,
    COLOR_BayerGR2BGR_VNG = 65,

    COLOR_BayerBG2RGB_VNG = COLOR_BayerRG2BGR_VNG,
    COLOR_BayerGB2RGB_VNG = COLOR_BayerGR2BGR_VNG,
    COLOR_BayerRG2RGB_VNG = COLOR_BayerBG2BGR_VNG,
    COLOR_BayerGR2RGB_VNG = COLOR_BayerGB2BGR_VNG,
    //! Edge-Aware Demosaicing
    COLOR_BayerBG2BGR_EA  = 135,
    COLOR_BayerGB2BGR_EA  = 136,
    COLOR_BayerRG2BGR_EA  = 137,
    COLOR_BayerGR2BGR_EA  = 138,
    COLOR_BayerBG2RGB_EA  = COLOR_BayerRG2BGR_EA,
    COLOR_BayerGB2RGB_EA  = COLOR_BayerGR2BGR_EA,
    COLOR_BayerRG2RGB_EA  = COLOR_BayerBG2BGR_EA,
    COLOR_BayerGR2RGB_EA  = COLOR_BayerGB2BGR_EA,
    //! Demosaicing with alpha channel
    COLOR_BayerBG2BGRA = 139,
    COLOR_BayerGB2BGRA = 140,
    COLOR_BayerRG2BGRA = 141,
    COLOR_BayerGR2BGRA = 142,
    COLOR_BayerBG2RGBA = COLOR_BayerRG2BGRA,
    COLOR_BayerGB2RGBA = COLOR_BayerGR2BGRA,
    COLOR_BayerRG2RGBA = COLOR_BayerBG2BGRA,
    COLOR_BayerGR2RGBA = COLOR_BayerGB2BGRA,
    COLOR_COLORCVT_MAX  = 143
};

使用案例

#python code 
#彩色图转灰度读
cvtColorImage = cv2.cvtColor('imagePath',cv2.COLOR_RGB2GRAY)
plt.figure("cvtColorImage")
plt.title("cvtColorImage")
plt.imshow(cvtColorImage)
plt.show()

#C code
#include <opencv2/opencv.hpp>
using namespace cv;
using namespace std;
int main(int argc, char** argv)
{
    Mat src = imread("youImagePath", 1);
    Mat cvtMat;
    cvtColor(src, cvtMat, COLOR_RGB2GRAY);
    namedWindow("src", 0);
    imshow("src", src);
    namedWindow("cvtMat", 0);
    imshow("cvtMat", cvtMat);
    waitKey(0);
    return 0;
}

效果图
在这里插入图片描述

2.函数convertTo

定义:

void cv::Mat::convertTo(OutputArray dst, int rtype, double alpha=1.0, double beta=0.0) const

参数:
dst:输出图像
rtype:转换的数据类型
alpha:尺度变换因子
beta: 附加到尺度变换后的值上的偏移量
作用:将图像从一种数据类型转换为另一种数据类型。

(该函数在opencv-python中并没有体现,可通过numpy函数.astype(np.uint8)来实现)

#python code
import numpy as np
#数据类型 np.uint8/np.uint16/np.uint32/np.uint64
stdImage = np.asarray(stdImage).astype(np.uint8)

#C++ code
#include <opencv2/opencv.hpp>
using namespace cv;
using namespace std;
int main(int argc, char** argv)
{
    Mat src = imread("xx.jpg", 0);
    Mat convertToMat;
    src.convertTo(convertToMat, CV_32F);
    int srcDepth = src.depth();
    int newDepth = convertToMat.depth();
    cout << "srcDepth=" << srcDepth << endl;
    cout << "newDepth=" << newDepth << endl;
    system("pause");
    return 0;
}

3.函数split (将多通道图像分离为每个通道)

定义:

void split(const Mat& src, Mat* mvbegin);
void split(InputArray m, OutputArrayOfArrays mv);
def split(m, mv=None)

参数:
src:输入图像
m:输入图像
mvbegin:输出每个通道
mv:输出每个通道

使用案例

#python code
image=cv2.imread('imagepath')
SplitImage1,SplitImage2,SplitImage3 = cv2.split(image)

#C++ code
#include <opencv2/opencv.hpp>
using namespace cv;
using namespace std;
int main(int argc, char** argv)
{
    Mat src = imread("xxx.jpg", 1);
    vector<Mat> vecMat;
    split(src,vecMat);
    namedWindow("src", 0);
    imshow("src", src);
    for (int i = 0; i < vecMat.size(); i++)
    {
        namedWindow(to_string(i), 0);
        imshow(to_string(i), vecMat[i]);
    }
    waitKey(0);
    return 0;
}

效果图
在这里插入图片描述

4.函数merge 将图片不同通道合并

定义:

void merge(const Mat* mv, size_t count, OutputArray dst);
void merge(InputArrayOfArrays mv, OutputArray dst);
def merge(mv, dst=None)

参数:
mv:输入的每个单通道图像
count:输入图像的数量
dst:输出的多通道
一般用于多个单通图片合并成多通道彩色图

python code
#python code
image=cv2.imread('imagepath')
SplitImage1,SplitImage2,SplitImage3 = cv2.split(image)
new_image_merge=cv2.merge([SplitImage1,SplitImage2,SplitImage3])
plt.figure("new_image_merge")
plt.title("new_image_merge")
plt.imshow(new_image_merge)
plt.show()

#C++ code
#include <opencv2/opencv.hpp>
using namespace cv;
using namespace std;
int main(int argc, char** argv)
{
    Mat src = imread("xxxx.jpg", 1);
    vector<Mat> vecMat;
    split(src, vecMat);
    Mat mergeMat;
    merge(vecMat, mergeMat);
    namedWindow("mergeMat", 0);
    imshow("mergeMat", mergeMat);
    waitKey(0);
    return 0;
}

5.函数extractChannel 指定抽取多通道图像的某个通道

定义:

void extractChannel(InputArray src, OutputArray dst, int coi);
def extractChannel(src, coi, dst=None)

参数:
src:输入的多通道图像
dst:输出指定通道图像
coi:输入图像的指定通道

使用案例

#python code
image=cv2.imread('imagepath')
channel0=cv2.extractChannel(image,0)
channel1=cv2.extractChannel(image,1)
channel2=cv2.extractChannel(image,2)

#C++ code
#include <opencv2/opencv.hpp>
using namespace cv;
using namespace std;
int main(int argc, char** argv)
{
    Mat src = imread("xxx.jpg", 1);
    Mat dst;
    extractChannel(src, dst, 1);
    namedWindow("dst", 0);
    imshow("dst", dst);
    waitKey(0);
    return 0;
}

6.函数applyColorMap 灰度图转伪彩色图

定义:

void applyColorMap(InputArray src, OutputArray dst, int colormap);
def applyColorMap(src, colormap, dst=None)

参数:
src:输入的多通道图像
dst:输出指定通道图像
colormap:颜色模式,可以取下列枚举值(具体效果大家自己可以手动尝试)

enum ColormapTypes
{
    COLORMAP_AUTUMN = 0, //!< ![autumn](pics/colormaps/colorscale_autumn.jpg)
    COLORMAP_BONE = 1, //!< ![bone](pics/colormaps/colorscale_bone.jpg)
    COLORMAP_JET = 2, //!< ![jet](pics/colormaps/colorscale_jet.jpg)
    COLORMAP_WINTER = 3, //!< ![winter](pics/colormaps/colorscale_winter.jpg)
    COLORMAP_RAINBOW = 4, //!< ![rainbow](pics/colormaps/colorscale_rainbow.jpg)
    COLORMAP_OCEAN = 5, //!< ![ocean](pics/colormaps/colorscale_ocean.jpg)
    COLORMAP_SUMMER = 6, //!< ![summer](pics/colormaps/colorscale_summer.jpg)
    COLORMAP_SPRING = 7, //!< ![spring](pics/colormaps/colorscale_spring.jpg)
    COLORMAP_COOL = 8, //!< ![cool](pics/colormaps/colorscale_cool.jpg)
    COLORMAP_HSV = 9, //!< ![HSV](pics/colormaps/colorscale_hsv.jpg)
    COLORMAP_PINK = 10, //!< ![pink](pics/colormaps/colorscale_pink.jpg)
    COLORMAP_HOT = 11, //!< ![hot](pics/colormaps/colorscale_hot.jpg)
    COLORMAP_PARULA = 12 //!< ![parula](pics/colormaps/colorscale_parula.jpg)
};

使用案例

#python code
image=cv2.imread('imagepath')
SplitImage1,SplitImage2,SplitImage3 = cv2.split(image)
applyColorMapImage = cv2.applyColorMap(SplitImage1,cv2.COLORMAP_AUTUMN)
plt.figure("applyColorMapImage")
plt.title("applyColorMapImage")
plt.imshow(applyColorMapImage)
plt.show()

#C++ code
#include <opencv2/opencv.hpp>
using namespace cv;
using namespace std;
int main(int argc, char** argv)
{
    Mat src = imread("xxx.jpg", 0);
    Mat dst(src.size(), src.depth());
    applyColorMap(src, dst, 1);
    namedWindow("dst", 0);
    imshow("dst", dst);
    waitKey(0);
    return 0;
}

效果图
在这里插入图片描述

更多推荐>>
四:OpenCV图片复制函数(C++/python)
五:OpenCV图像变换与增强一(C++/python)