KNN算法实现

发布于:2023-03-27 ⋅ 阅读:(212) ⋅ 点赞:(0)
k近邻算法就是对于所有的数据点中,选取离它最近的k个点,从而判断类别。

import numpy as np
import matplotlib.pyplot as plt
raw_data_X = [[3.393533211, 2.331273381],
              [3.110073483, 1.781539638],
              [1.343808831, 3.368360954],
              [3.582294042, 4.679179110],
              [2.280362439, 2.866990263],
              [7.423436942, 4.696522875],
              [5.745051997, 3.533989803],
              [9.172168622, 2.511101045],
              [7.792783481, 3.424088941],
              [7.939820817, 0.791637231]
             ]
raw_data_y = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]
X_train = np.array(raw_data_X)
y_train = np.array(raw_data_y)
plt.scatter(X_train[y_train==0,0], X_train[y_train==0,1], color='g')
plt.scatter(X_train[y_train==1,0], X_train[y_train==1,1], color='r')
plt.show()

添加一个新点


x  ==  np.array([([8.0936073188.09360 , 3.365731514])

plt.scatter(X_train[y_train==0,0], X_train[y_train==0,1], color='g')
plt.scatter(X_train[y_train==1,0], X_train[y_train==1,1], color='r')
plt.scatter(x[0], x[1], color='b')
plt.show()


knn过程

from math import sqrt
distances = []
for x_train in X_train:
    d = sqrt(np.sum((x_train - x)**2))
    distances.append(d)


distances也可以写成
distances = [sqrt(np.sum((x_train - x)**2))
             for x_train in X_train]
             
nearest = np.argsort(distances)
k = 6
topK_y = [y_train[neighbor] for neighbor in nearest[:k]]


用于统计两种类别个数
from collections import Counter
votes = Counter(topK_y)


predict_y = votes.most_common(1)[0][0]


结果
predict_y

以上是knn算法的实现,这里我们采用了自己的数据,下面引入sklearn中的方法和数据进行实现。


    from sklearn.neighbors import KNeighborsClassifier
    kNN_classifier = KNeighborsClassifier(n_neighbors=6)
    kNN_classifier.fit(X_train, y_train)
    y_predict = kNN_classifier.predict(x.reshape(1,-1))
    y_predict[0]
    

sklearn的流程已经走完了,现在自己仿造sklearn写一个knn函数。



class KNNClassifier:
    def __init__(self, k ):
        assert k >= 1, "k must be valid"
        self.k = k
        self._X_train = None
        self._y_train = None


    def fit(self, X_train, y_train):

        assert X_train.shape[0] == y_train.shape[0],"the size must valid"
        assert self.k <= X_train.shape[0], "value k must be valid"

        self._X_train = X_train
        self._y_train = y_train
        return self

    def predict(self,X_predict):
        assert self._X_train is not None and self._y_train is not None , "must fit before predict"
        assert X_predict.shape[1] == self._X_train.shape[1]

        y_predict = [self._predict(x) for x in X_predict]
        return np.array(y_predict)

    def _predict(self, x):
        distances = [sqrt(np.sum((x_train - x) ** 2)) for x_train in self._X_train]
        nearest = np.argsort(distances)

        topK_y = [self._y_train[i] for i in nearest[:self.k]]

        votes = Counter(topK_y)

        return votes.most_common(1)[0][0]

    def __repr__(self):
        return "KNN(k=%d)" % self.k

这样我们就完整地形成了对knn算法形成了封装,接下来要对该算法进行测试。测试的原理就是分离出一部分数据用于测试,另一部分用于训练。

split函数用于将数据集分成测试和训练两个部分



import numpy as np


def train_test_split(X, y, test_ratio=0.2, seed=None):
    """将数据 X 和 y 按照test_ratio分割成X_train, X_test, y_train, y_test"""
    assert X.shape[0] == y.shape[0], \
        "the size of X must be equal to the size of y"
    assert 0.0 <= test_ratio <= 1.0, \
        "test_ration must be valid"

    if seed:
        np.random.seed(seed)

    shuffled_indexes = np.random.permutation(len(X))

    test_size = int(len(X) * test_ratio)
    test_indexes = shuffled_indexes[:test_size]
    train_indexes = shuffled_indexes[test_size:]

    X_train = X[train_indexes]
    y_train = y[train_indexes]

    X_test = X[test_indexes]
    y_test = y[test_indexes]

    return X_train, X_test, y_train, y_test
    
    
    
from playML.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y)

from  playML.kNNplayML.k  import KNNClassifier

my_knn_clf = KNNClassifier(k=3)
my_knn_clf.fit(X_train, y_train)
y_predict = my_knn_clf.predict(X_test)


sum(y_predict == y_test)
sum(y_predict == y_test) / len(y_test)
结果为预测准确率

当然sklearn也有对应的函数来计算准确率


    from sklearn.model_selection import train_test_split
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=666)
    from sklearn.neighbors import KNeighborsClassifier

    knn_clf = KNeighborsClassifier(n_neighbors=3)
    knn_clf.fit(X_train, y_train)
    y_predict = knn_clf.predict(X_test)
    from sklearn.metrics import accuracy_score

    accuracy_score(y_test, y_predict)

我们也可以封装自己的准确率计算函数


import numpy as np


def accuracy_score(y_true, y_predict):
    '''计算y_true和y_predict之间的准确率'''
    assert y_true.shape[0] == y_predict.shape[0], \
        "the size of y_true must be equal to the size of y_predict"

    return sum(y_true == y_predict) / len(y_true)

准确度计算完了,那么在计算knn时k的取值该如何优化呢?这里就涉及到了超参数。

经典的KNN调包实现过程如下


    import numpy as np
    from sklearn import datasets

    digits = datasets.load_digits()
    X = digits.data
    y = digits.target

    from sklearn.model_selection import train_test_split
    
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=666)

    from sklearn.neighbors import KNeighborsClassifier
    
    knn_clf = KNeighborsClassifier(n_neighbors=3)
    knn_clf.fit(X_train, y_train)
    knn_clf.score(X_test, y_test)

寻找更好的K,k从1到10,计算结果最好的k值,这里最好的k是4,如果是10的话需要继续寻找大于10的k:


    best_score = 0.0
    best_k = -1
    for k in range(1, 11):
        knn_clf = KNeighborsClassifier(n_neighbors=k)
        knn_clf.fit(X_train, y_train)
        score = knn_clf.score(X_test, y_test)
        if score > best_score:
            best_k = k
            best_score = score
            
    print("best_k =", best_k)
    print("best_score =", best_score)
考虑更多因素,之前取k时,只考虑到了k个节点里哪个类型更多,预测就取那个类型,实际上还需要考虑k个节点里不同距离有不同的权重,离得近的虽然数量少,但是权重应该更大,当method为uniform时,为不考虑距离,distance时考虑:

    best_score = 0.0
    best_k = -1
    best_method = ""
    for method in ["uniform", "distance"]:
        for k in range(1, 11):
            knn_clf = KNeighborsClassifier(n_neighbors=k, weights=method)
            knn_clf.fit(X_train, y_train)
            score = knn_clf.score(X_test, y_test)
            if score > best_score:
                best_k = k
                best_score = score
                best_method = method
            
    print("best_method =", best_method)
    print("best_k =", best_k)
    print("best_score =", best_score)
    sk_knn_clf = KNeighborsClassifier(n_neighbors=4, weights="distance", p=1)
    sk_knn_clf.fit(X_train, y_train)
    sk_knn_clf.score(X_test, y_test)
best_method = uniform
best_k = 4
best_score = 0.991666666667

此时我们考虑了距离,这个距离叫做欧拉距离,除了欧拉距离之外我们还有其他计算方式,比如曼哈顿距离和明科夫斯基距离,这里引入明科夫斯基距离里面的超参数p:

best_scorebest_sco  = 0.0
best_k = -1
best_p = -1

for k in range(1, 11):
    for p in range(1, 6):
        knn_clf = KNeighborsClassifier(n_neighbors=k, weights="distance", p=p)
        knn_clf.fit(X_train, y_train)
        score = knn_clf.score(X_test, y_test)
        if score > best_score:
            best_k = k
            best_p = p
            best_score = score
        
print("best_k =", best_k)
print("best_p =", best_p)
print("best_score =", best_score)

best_k = 3
best_p = 2
best_score = 0.988888888889

本文含有隐藏内容,请 开通VIP 后查看