树,二叉树的概念与结构

发布于:2023-09-16 ⋅ 阅读:(69) ⋅ 点赞:(0)

在这里插入图片描述

所属专栏:初始数据结构❤️
🚀 >博主首页:初阳785❤️
🚀 >代码托管:chuyang785❤️
🚀 >感谢大家的支持,您的点赞和关注是对我最大的支持!!!❤️
🚀 >博主也会更加的努力,创作出更优质的博文!!❤️
🚀 >关注我,关注我,关注我,重要的事情说三遍!!!!!!!!❤️

1️⃣ .树的概念及结构

1.1树的概念

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因
它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的

  • 有一个特殊的结点,称为根结点,根节点没有前驱结点
  • 除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i
    <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
  • 因此,树是递归定义
  • 下述R称为根节点
    在这里插入图片描述
    ⚠️⚠️注意:树结构中,子树之间没有交际,否则就不是树结构了
    在这里插入图片描述

在这里插入图片描述

1.2树的相关概念

1.节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6
2.叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I…等节点为叶节点
3.非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G…等节点为分支节点
4.双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点
5.孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点
6.兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点
7.树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6
8.节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
9.树的高度或深度:树中节点的最大层次; 如上图:树的高度为4
10,堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点
12,节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先
13.子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙
14森林:由m(m>0)棵互不相交的树的集合称为森林

1.3树的实现方式

  • 树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既然保存值域,也要保存结点和结点之间 的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。我们这里就简单的了解其中最常用的孩子兄弟表示法。
typedef int DataType;
struct Node
{
struct Node* _firstChild1; // 第一个孩子结点
struct Node* _pNextBrother; // 指向其下一个兄弟结点
DataType _data; // 结点中的数据域
};

在这里插入图片描述

1.4树的实际用途

我们在使用电脑的时候,各个文件之间的根目录,以及根目录下的文件就组合成立一个树状结构
例如:
在这里插入图片描述

2️⃣.二叉树的概念及结构

2.1二叉树的概念

一棵二叉树是结点的一个有限集合,该集合:

  1. 或者为空
  2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组
  3. 子节点大于等于0 & 小于等于2
  4. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
    在这里插入图片描述
    ⚠️⚠️注意:对任意的二叉树都有以下几种复合情况
    在这里插入图片描述

2.2特殊二叉树

  1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是
    说,如果一个二叉树的层数为K,且结点总数是 ,则它就是满二叉树。
  2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K
    的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对
    应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树

在这里插入图片描述
⚠️⚠️注意:一下的不是完全二叉树
⚠️⚠️注意:完全二叉树的最后一层子节点个数要大于等于1
在这里插入图片描述

  • 1️⃣ .如果是我们的满二叉树,则他的总结点数就是:
    在这里插入图片描述
  • 2️⃣ .如果是我们的满二叉树,则他的总结点数就是:
    假设有n层,我们假设第n层有m个节点,所以总结点数就是:2^(n -1 ) - 1 + m;

2.3二叉树的概念

  1. 若规定根节点的层数编号从1开始,则一棵非空二叉树的第i层上最多有 2^(i - 1)个结点.
  2. 若规定根节点的层数编号从1开始,则深度为h的二叉树的最大结点数是 2^h - 1.
  3. 对任何一棵二叉树, 如果度为0其叶结点个数为n1 , 度为2的分支结点个数为 n2,则有n1 = n2 + 1
  4. 若规定根节点的层数编号从1开始,具有n个结点的满二叉树的深度h= log2(n + 1). (ps: 是log以2为底,n+1为对数)
  5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对
    于序号为i的结点有:
    1️⃣ .若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点
    2️⃣.若2i+1<n,左孩子序号:2i+1,2i+1>=n否则无左孩子
    3️⃣.若2i+2<n,右孩子序号:2i+2,2i+2>=n否则无右孩子
    在这里插入图片描述

2.4二叉树的存储结构

二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构

  1. 顺序存储
    顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空
    间的浪费。而现实中使用中只有堆才会使用数组来存储,关于堆我们后面的章节会专门讲解。二叉树顺 序存储在物理上是一个数组,在逻辑上是一颗二叉树。

在这里插入图片描述

  1. 链式存储
    二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是
    链表中每个结点由三个域组成数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子
    在的链结点的存储地址 。链式结构又分为二叉链和三叉链,当前我们学习中一般都是二叉链,后面课程
    学到高阶数据结构如红黑树等会用到三叉链

在这里插入图片描述

本文含有隐藏内容,请 开通VIP 后查看