机器学习 - metric评估方法

发布于:2024-04-09 ⋅ 阅读:(99) ⋅ 点赞:(0)

有一些方法来评估classification model。

Metric name / Evaluation method Definition Code
Accuracy Out of 100 predictions, how many does your model get correct? E.g. 95% accuracy means it gets 95/100 predictions correct. torchmetrics.Accuracy() or sklearn.metrics.accuracy_score()
Precision Proportion of true positive over total number of samples. Higher precision leads to less false positives (model predicts 1 when it should’ve been 0). torchmetrics.Precision() or sklearn.metrics.precision_score()
Recall Proportion of true positives over total number of true positives and false negatives (model predicts 0 when it should’ve been 1). Higher recall leads to less false negatives. torchmetrics.Recall() or sklearn.metrics.recall_score()
F1-score Combines precision and recall into one metric, 1 is best, 0 is worst torchmetrics.F1Score() or sklearn.metrics.f1_score()
Confusion matrix Compares the predicted values with the true values in a tabular way, if 100% correct, all values in the matrix will be top left to bottom right (diagnoal line). torchmetrics.ConfusionMatrix or sklearn.metrics.plot_confusion_matrix()
Classification report Collection of some of the main classification metrics such as precision, recall and f1-score. sklearn.metrics.classification_report()

点个赞呗~


网站公告

今日签到

点亮在社区的每一天
去签到