MATLAB初学者入门(8)—— 动态规划

发布于:2024-04-21 ⋅ 阅读:(81) ⋅ 点赞:(0)

        动态规划是一种数学方法,用于解决具有递归结构的决策问题,特别是那些涉及顺序决策的问题。在MATLAB中实现动态规划,可以通过定义状态变量、决策变量、状态转移方程以及目标函数来完成。以下是具体的案例分析。

案例分析:项目资源分配优化

        假设一个公司有几个项目同时运行,每个项目都需要分配一定数量的资源,如资金、人员等,以完成项目。公司的目标是最大化所有项目的总利润,每个项目的利润与投入的资源量呈非线性关系。资源是有限的,因此需要通过动态规划来优化资源的分配。

步骤 1: 定义状态和决策变量
  • 状态变量x(i, j)表示在处理到第i个项目时还剩下j单位的资源。
  • 决策变量u(i, j)表示决定分配给第i个项目j单位资源的结果。
步骤 2: 目标函数和状态转移
  • 目标函数:最大化总利润。
  • 状态转移方程x(i, j) = x(i-1, j) + u(i, j),表示在给第i个项目分配资源后的剩余资源。
步骤 3: 动态规划的递归解法
  • 递归公式F(i, j) = max(F(i-1, j-k) + profit(i, k) for all k <= j),这里profit(i, k)是给第i个项目分配k单位资源所得的利润。
步骤 4: 边界条件
  • 当没有资源或项目时的利润为0:F(0, j) = 0F(i, 0) = 0
步骤 5: 实现代码

在MATLAB中实现以上逻辑:

function total_profit = resourceAllocationDP(total_resources, profits)
    n = size(profits, 1);  % 项目数量
    F = zeros(n + 1, total_resources + 1);  % 初始化DP表

    % 填充DP表
    for i = 1:n
        for j = 0:total_resources
            for k = 0:j  % 对于每个项目,尝试所有可能的资源分配
                F(i + 1, j + 1) = max(F(i + 1, j + 1), F(i, j - k + 1) + profits(i, k + 1));
            end
        end
    end
    
    total_profit = F(n + 1, total_resources + 1);  % 最终结果
end

% 示例利润函数,每行代表一个项目,每列代表分配给该项目的资源量对应的利润
profits = [0 10 20 30; 0 12 24 36; 0 14 28 42];
total_resources = 3;
result = resourceAllocationDP(total_resources, profits);
disp(['Total maximum profit: ', num2str(result)]);

案例分析:行李装载问题(Knapsack Problem)

        假设一个航班的货舱有一个最大重量限制,我们有多件不同重量和价值的行李,需要决定哪些行李被装载以最大化总价值。

步骤 1: 定义状态和决策变量
  • 状态变量V(i, w)表示考虑前i件行李且当前重量限制为w时的最大价值。
  • 决策变量:是否选择装载当前行李。
步骤 2: 目标函数和状态转移
  • 目标函数:最大化装载行李的总价值。
  • 状态转移方程: V(i,w)=max(V(i−1,w),V(i−1,w−wi​)+vi​) ,其中,wivi分别是第i件行李的重量和价值。
步骤 3: 动态规划的递归解法
  • 从基础情况开始填充表格,即没有行李或重量限制为0的情况。
步骤 4: 边界条件
  • V(0, w) = 0 对所有w(没有行李时价值为0)
  • V(i, 0) = 0 对所有i(没有可用重量时价值为0)
步骤 5: 实现代码

在MATLAB中实现动态规划算法:

function max_value = knapsack(weights, values, capacity)
    n = length(values);  % 行李件数
    V = zeros(n+1, capacity+1);  % DP表初始化
    
    % 填充DP表
    for i = 1:n
        for w = 0:capacity
            if weights(i) > w
                V(i+1, w+1) = V(i, w+1);  % 当前行李太重,无法装载
            else
                V(i+1, w+1) = max(V(i, w+1), V(i, w - weights(i) + 1) + values(i));
            end
        end
    end
    
    max_value = V(n+1, capacity+1);
end

% 测试数据
weights = [2, 3, 4, 5];
values = [3, 4, 5, 6];
capacity = 5;
result = knapsack(weights, values, capacity);
disp(['Maximum value that can be accommodated: ', num2str(result)]);

案例分析:投资组合选择优化

        假设一个投资者希望分配其资金到不同的投资项目中,每个项目都有预期的回报率和风险。投资者的目标是最大化其总回报,同时控制总风险不超过一个给定的阈值。

步骤 1: 定义状态和决策变量
  • 状态变量F(i, r)表示在考虑前i个项目并且累计风险不超过r的情况下可以获得的最大回报。
  • 决策变量x[i]表示分配给第i个项目的资金量。
步骤 2: 目标函数和状态转移
  • 目标函数:最大化总回报。
  • 状态转移方程: F(i,r)=max(F(i−1,r),F(i−1,r−riski​)+returni​) 其中,riskireturni分别是第i个项目的风险和回报。
步骤 3: 动态规划的递归解法
  • 逐步填充一个二维表,其中的每个元素代表一个特定的决策状态。
步骤 4: 边界条件
  • F(0, r) = 0 对所有r(没有项目时回报为0)
  • F(i, 0) = 0 对所有i(没有可承担的风险时回报为0)
步骤 5: 实现代码

在MATLAB中实现该动态规划算法:

function max_return = portfolioOptimization(returns, risks, max_risk)
    n = length(returns);  % 项目数量
    F = zeros(n+1, max_risk+1);  % DP表初始化
    
    % 填充DP表
    for i = 1:n
        for r = 0:max_risk
            if risks(i) > r
                F(i+1, r+1) = F(i, r+1);  % 当前项目风险过高,无法承担
            else
                F(i+1, r+1) = max(F(i, r+1), F(i, r - risks(i) + 1) + returns(i));
            end
        end
    end
    
    max_return = F(n+1, max_risk+1);
end

% 测试数据
returns = [5, 10, 6, 15];  % 各项目的预期回报
risks = [2, 3, 1, 5];  % 各项目的风险
max_risk = 5;  % 最大可承担风险
result = portfolioOptimization(returns, risks, max_risk);
disp(['Maximum possible return: ', num2str(result)]);

结论

(1)展示了如何使用MATLAB实现一个简单的动态规划算法来解决资源分配问题。通过逐步建立状态转移方程并计算每个阶段的最优解,我们能够得到资源分配的最优策略。动态规划是解决复杂决策问题的强大工具,适用于各种领域,包括经济管理、工程设计、运筹学和人工智能等。

(2)展示了如何使用动态规划解决经典的背包问题。通过递归地构建解决方案并记录每个阶段的最优解,我们能够找到在给定重量限制下能够装载的最大价值。动态规划是一种强大的方法,特别适用于解决具有递推性质和重叠子问题的优化问题。在MATLAB中,通过建立适当的数据结构和递推关系,可以有效地解决广泛的优化问题。

(3)展示了如何使用动态规划解决投资组合选择问题,通过考虑不同投资的风险和回报,在风险可接受的前提下最大化总回报。通过动态规划,可以有效地解决包含多阶段决策和风险管理的复杂财务问题。这种方法的强大之处在于它的通用性和灵活性,可以应用于任何涉及顺序决策和风险评估的场景,为金融分析师和决策者提供了一种强有力的工具。