全栈式数据统计:Flask+Pandas按年,季度,月统计显示

发布于:2024-05-20 ⋅ 阅读:(148) ⋅ 点赞:(0)

话不多说,有图有源码

1.实现效果:

按季度统计

按月度统计:

2.实现源码:

2.1)test_pandashtml.py

from flask import Flask, render_template
import pandas as pd

app = Flask(__name__)

# 自定义千分位格式化函数
def format_thousands(x):
    return f'{x:,.2f}'

@app.route('/')
def show_dataframe():
    path = r'F:\test_data\年度销售数据\xxx年度销售数据.xlsx'
    data = pd.read_excel(path, engine='openpyxl')
    data['报审日期'] = pd.to_datetime(data['报审日期'])
    year = data['报审日期'].dt.year
    quarter = data['报审日期'].dt.quarter
    month = data['报审日期'].dt.month
    # print(f"{type(month)},{month}")
    data2 = pd.pivot_table(data, index=['事业部','办事处部门'], values='合同金额', columns=month,
                           aggfunc=sum)  # ,'办事处部门',fill_value='无'
    # -------数值千分位格式化
    data2 = data2.applymap(format_thousands)  # .fillna(value=0, inplace=True)
    print(data2)


    # 将DataFrame转换为HTML
    html = data2.to_html() #index=False
    return render_template('test.html', table=html)


if __name__ == '__main__':
    app.run(debug=True)

2.2)html页面test.html

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <title>Title</title>
<style>
table {
  border-collapse: collapse;
  width: 100%;
  text-align: left;
  font-family: Arial, sans-serif;
  font-size: 14px;
}
td, th {
  border: 1px solid #ddd;
  padding: 8px;
}
th {
  background-color: #f2f2f2;
  color: #333;
}
tr:nth-child(even) {
  background-color: #f9f9f9;
}
</style>
</head>
<body>
    <div>
        {{ table|safe }}
    </div>
</body>
</html>

3.注意细节:

3.1)遇到不规范的日期格式,会报错怎么办

        

3.2)显示输出的数据格式为千分位加保留两位小数的方法,使用applymap

就到这吧,对你有用给个赞


网站公告

今日签到

点亮在社区的每一天
去签到