基于KV Cache构建流式帧级别Transformer实现自回归解码

发布于:2024-07-10 ⋅ 阅读:(176) ⋅ 点赞:(0)

在自然语言处理和序列建模中,Transformer模型因其在处理长距离依赖关系上的卓越性能而被广泛使用。传统的Transformer模型在处理长序列时,计算和存储的开销较大,而流式帧级别Transformer通过引入KV Cache(键值缓存)来有效地缓解这一问题。

本文将介绍如何基于KV Cache构建流式帧级别Transformer,并实现自回归解码。通过实际代码示例,详细解释其工作原理和实现细节。
在这里插入图片描述

流式帧级别Transformer简介

流式帧级别Transformer是一种特殊的Transformer变体,设计用于流式输入处理。这种模型可以在序列的每个时间步处理输入,并且利用KV Cache存储历史的键和值,避免重复计算,从而提高效率。自回归解码则意味着模型在生成下一个输出时依赖于之前的输出。

代码实现

我们将实现一个包含编码器和解码器的流式帧级别Transformer模型。编码器和解码器分别利用KV Cache存储和更新历史信息,以实现高效的序列建模和生成。

编码器

首先,定义编码器类StreamSelfAttentionEncoder

import torch
import torch.nn as nn
import math

class StreamSelfAttentionEncoder(nn.Module):
    def __init__(self, model_dim, self_attention_size):
        super(StreamSelfAttentionEncoder, self).__init__()
        self.model_dim = model_dim
        self.self_attention_size = self_attention_size
        self.Q = nn.Linear(model_dim, model_dim)
        self.K = nn.Linear(model_dim, model_dim)
        self.V = nn.Linear(model_dim, model_dim)
        self.softmax = nn.Softmax(dim=-1)
        
        # FFN
        self.ffn = nn.Sequential(
            nn.Linear(model_dim, model_dim * 4),
            nn.ReLU(),
            nn.Linear(model_dim * 4, model_dim)
        )

    def forward(self, x, k_cache=None, v_cache=None, pos=None):
        # Ensure positional encoding is on the same device as x
        if pos is not None:
            pos_enc = self.get_positional_encoding(pos, self.model_dim, x.device)
            x = x + pos_enc.unsqueeze(0).unsqueeze(1)  # (N, 1, model_dim)
        
        # Project inputs to Q, K, V
        q = self.Q(x)  # (N, 1, model_dim)
        k = self.K(x)  # (N, 1, model_dim)
        v = self.V(x)  # (N, 1, model_dim)
        
        batch_size = x.size(0)
        
        # Initialize k_cache and v_cache if not provided
        if k_cache is None:
            k_cache = torch.zeros((batch_size, 0, self.model_dim), device=x.device)
            v_cache = torch.zeros((batch_size, 0, self.model_dim), device=x.device)
        
        # Concatenate past K, V with current K, V
        k_cache = torch.cat([k_cache, k], dim=1)  # (N, seq_len + 1, model_dim)
        v_cache = torch.cat([v_cache, v], dim=1)  # (N, seq_len + 1, model_dim)
        
        # Compute attention scores
        attn_scores = torch.matmul(q, k_cache[:, -self.self_attention_size:].transpose(-2, -1)) / math.sqrt(self.model_dim)
        attn_weights = self.softmax(attn_scores)
        
        # Compute attention output
        attn_output = torch.matmul(attn_weights, v_cache[:, -self.self_attention_size:])
        
        # Apply skip connection and FFN
        attn_output = attn_output + x
        ffn_output = self.ffn(attn_output)
        output = ffn_output + attn_output
        
        return output, k_cache, v_cache

    def get_positional_encoding(self, pos, model_dim, device):
        pe = torch.zeros(model_dim, device=device)
        div_term = torch.exp(torch.arange(0, model_dim, 2, device=device).float() * (-math.log(10000.0) / model_dim))
        pe[0::2] = torch.sin(pos * div_term)
        pe[1::2] = torch.cos(pos * div_term)
        return pe

在这个编码器中,我们通过以下步骤来处理输入数据:

  1. 位置编码(Positional Encoding)

    if pos is not None:
        pos_enc = self.get_positional_encoding(pos, self.model_dim, x.device)
        x = x + pos_enc.unsqueeze(0).unsqueeze(1)  # (N, 1, model_dim)
    

    这里我们为输入x添加位置编码,以保留序列信息。

  2. 投影(Projection)

    q = self.Q(x)  # (N, 1, model_dim)
    k = self.K(x)  # (N, 1, model_dim)
    v = self.V(x)  # (N, 1, model_dim)
    

    将输入x投影到查询(Query)、键(Key)和值(Value)空间。

  3. KV缓存初始化和更新(KV Cache Initialization and Update)

    if k_cache is None:
        k_cache = torch.zeros((batch_size, 0, self.model_dim), device=x.device)
        v_cache = torch.zeros((batch_size, 0, self.model_dim), device=x.device)
    
    k_cache = torch.cat([k_cache, k], dim=1)  # (N, seq_len + 1, model_dim)
    v_cache = torch.cat([v_cache, v], dim=1)  # (N, seq_len + 1, model_dim)
    

    初始化并更新KV缓存,将当前的kv值拼接到缓存中。

  4. 注意力计算(Attention Calculation)

    attn_scores = torch.matmul(q, k_cache[:, -self.self_attention_size:].transpose(-2, -1)) / math.sqrt(self.model_dim)
    attn_weights = self.softmax(attn_scores)
    attn_output = torch.matmul(attn_weights, v_cache[:, -self.self_attention_size:])
    

    计算查询与缓存中键的点积,然后通过softmax获得注意力权重,再将权重应用到缓存中的值上,得到注意力输出。

  5. 前馈网络(Feed-Forward Network)和跳跃连接(Skip Connection)

    attn_output = attn_output + x
    ffn_output = self.ffn(attn_output)
    output = ffn_output + attn_output
    

    最后,将注意力输出与输入相加,再经过前馈网络和跳跃连接得到最终输出。

解码器

接下来,定义解码器类StreamSelfAttentionDecoder

class StreamSelfAttentionDecoder(nn.Module):
    def __init__(self, model_dim, self_attention_size, cross_attention_size):
        super(StreamSelfAttentionDecoder, self).__init__()
        self.model_dim = model_dim
        self.self_attention_size = self_attention_size
        self.cross_attention_size = cross_attention_size
        self.Qe = nn.Linear(model_dim, model_dim)
        self.Qd = nn.Linear(model_dim, model_dim)
        self.Kd = nn.Linear(model_dim, model_dim)
        self.Vd = nn.Linear(model_dim, model_dim)
        self.softmax = nn.Softmax(dim=-1)
        
        # FFN
        self.ffn = nn.Sequential(
            nn.Linear(model_dim, model_dim * 4),
            nn.ReLU(),
            nn.Linear(model_dim * 4, model_dim)
        )

    def forward(self, x,
                encoder_k_cache,
                encoder_v_cache,
                decoder_k_cache=None,
                decoder_v_cache=None, 
                pos=None):
        
        batch_size = x.size(0)

        # Ensure positional encoding is on the same device as x
        if pos is not None:
            pos_enc = self.get_positional_encoding(pos, self.model_dim, x.device)
            x = x + pos_enc.unsqueeze(0).unsqueeze(1)  # (N, 1, model_dim)
        
        # Initialize caches if not provided
        if decoder_k_cache is None:
            decoder_k_cache = torch.zeros((batch_size, 0, self.model_dim), device=x.device)
            decoder_v_cache = torch.zeros((batch_size, 0, self.model_dim), device=x.device)
        
        # Decoder self-attention
        qd = self.Qd(x)  # (N, 1, model_dim)
        kd = self.Kd(x)  # (N, 1, model_dim)
        vd = self.Vd(x)  # (N, 1, model_dim)

        # Concatenate past K, V with current K, V
        decoder_k_cache = torch.cat([decoder_k_cache, kd], dim=1)  # (N, seq_len + 1, model_dim)
        decoder_v_cache = torch.cat([decoder_v_cache, vd], dim=1)  # (N, seq_len + 1

, model_dim)
        
        # Compute self-attention scores
        attn_self_scores = torch.matmul(qd, decoder_k_cache[:, -self.self_attention_size:].transpose(-2, -1)) / math.sqrt(self.model_dim)
        attn_self_weights = self.softmax(attn_self_scores)
        attn_self_output = torch.matmul(attn_self_weights, decoder_v_cache[:, -self.self_attention_size:])
        attn_self_output = attn_self_output + x

        # Encoder-decoder cross-attention
        qe = self.Qe(attn_self_output)
        attn_cross_scores = torch.matmul(qe, encoder_k_cache[:, -self.cross_attention_size:].transpose(-2, -1)) / math.sqrt(self.model_dim)
        attn_cross_weights = self.softmax(attn_cross_scores)
        attn_cross_output = torch.matmul(attn_cross_weights, encoder_v_cache[:, -self.cross_attention_size:])
        attn_cross_output = attn_cross_output + attn_self_output

        # Apply skip connection and FFN
        ffn_output = self.ffn(attn_cross_output)
        output = ffn_output + attn_cross_output
        
        return output, decoder_k_cache, decoder_v_cache

    def get_positional_encoding(self, pos, model_dim, device):
        pe = torch.zeros(model_dim, device=device)
        div_term = torch.exp(torch.arange(0, model_dim, 2, device=device).float() * (-math.log(10000.0) / model_dim))
        pe[0::2] = torch.sin(pos * div_term)
        pe[1::2] = torch.cos(pos * div_term)
        return pe

在这个解码器中,我们通过以下步骤来处理输入数据:

  1. 位置编码(Positional Encoding)

    if pos is not None:
        pos_enc = self.get_positional_encoding(pos, self.model_dim, x.device)
        x = x + pos_enc.unsqueeze(0).unsqueeze(1)  # (N, 1, model_dim)
    

    这里我们为输入x添加位置编码,以保留序列信息。

  2. 投影(Projection)

    qd = self.Qd(x)  # (N, 1, model_dim)
    kd = self.Kd(x)  # (N, 1, model_dim)
    vd = self.Vd(x)  # (N, 1, model_dim)
    

    将输入x投影到查询(Query)、键(Key)和值(Value)空间。

  3. KV缓存初始化和更新(KV Cache Initialization and Update)

    if decoder_k_cache is None:
        decoder_k_cache = torch.zeros((batch_size, 0, self.model_dim), device=x.device)
        decoder_v_cache = torch.zeros((batch_size, 0, self.model_dim), device=x.device)
    
    decoder_k_cache = torch.cat([decoder_k_cache, kd], dim=1)  # (N, seq_len + 1, model_dim)
    decoder_v_cache = torch.cat([decoder_v_cache, vd], dim=1)  # (N, seq_len + 1, model_dim)
    

    初始化并更新解码器的KV缓存,将当前的kdvd值拼接到缓存中。

  4. 自注意力计算(Self-Attention Calculation)

    attn_self_scores = torch.matmul(qd, decoder_k_cache[:, -self.self_attention_size:].transpose(-2, -1)) / math.sqrt(self.model_dim)
    attn_self_weights = self.softmax(attn_self_scores)
    attn_self_output = torch.matmul(attn_self_weights, decoder_v_cache[:, -self.self_attention_size:])
    attn_self_output = attn_self_output + x
    

    计算查询与解码器缓存中键的点积,然后通过softmax获得注意力权重,再将权重应用到缓存中的值上,得到自注意力输出。

  5. 交叉注意力计算(Cross-Attention Calculation)

    qe = self.Qe(attn_self_output)
    attn_cross_scores = torch.matmul(qe, encoder_k_cache[:, -self.cross_attention_size:].transpose(-2, -1)) / math.sqrt(self.model_dim)
    attn_cross_weights = self.softmax(attn_cross_scores)
    attn_cross_output = torch.matmul(attn_cross_weights, encoder_v_cache[:, -self.cross_attention_size:])
    attn_cross_output = attn_cross_output + attn_self_output
    

    计算自注意力输出与编码器缓存中键的点积,然后通过softmax获得注意力权重,再将权重应用到编码器缓存中的值上,得到交叉注意力输出。

  6. 前馈网络(Feed-Forward Network)和跳跃连接(Skip Connection)

    ffn_output = self.ffn(attn_cross_output)
    output = ffn_output + attn_cross_output
    

    最后,将交叉注意力输出与输入相加,再经过前馈网络和跳跃连接得到最终输出。

示例代码

以下代码展示了如何实例化编码器和解码器,并进行前向传播:

if __name__ == "__main__":
    batch_size = 2
    model_dim = 64
    attention_size = 10
    self_attention_size = 8
    cross_attention_size = 6
    seq_len = 1
    decoder_step = 4
    device = 'cuda' if torch.cuda.is_available() else 'cpu'

    # Instantiate the self-attention encoder and decoder
    encoder = StreamSelfAttentionEncoder(model_dim, attention_size).to(device)
    decoder = StreamSelfAttentionDecoder(model_dim, self_attention_size, cross_attention_size).to(device)
    
    encoder_k_cache = encoder_v_cache = None
    decoder_k_cache = decoder_v_cache = None
    
    for t in range(100):
        x = torch.rand(batch_size, seq_len, model_dim).to(device)  # (N, 1, model_dim)
        pos = t  # Current position
        
        # Encoder forward pass
        encoder_output, encoder_k_cache, encoder_v_cache = encoder(x, encoder_k_cache, encoder_v_cache, pos)
        print(f"Encoder Output shape at time step {t}: {encoder_output.shape}")  # (N, 1, model_dim)
        print(f"Encoder k_cache shape: {encoder_k_cache.shape}")  # (N, seq_len + 1, model_dim)
        print(f"Encoder v_cache shape: {encoder_v_cache.shape}")  # (N, seq_len + 1, model_dim)
        print()

        if t % decoder_step == 0:
            # Decoder forward pass
            decoder_output, decoder_k_cache, decoder_v_cache = decoder(encoder_output, encoder_k_cache, encoder_v_cache, decoder_k_cache, decoder_v_cache, pos)
            print(f"Decoder Output shape at time step {t}: {decoder_output.shape}")  # (N, 1, model_dim)
            print(f"Decoder k_cache shape: {decoder_k_cache.shape}")  # (N, seq_len + 1, model_dim)
            print(f"Decoder v_cache shape: {decoder_v_cache.shape}")  # (N, seq_len + 1, model_dim)
            print()

运行结果如下(对解码器进行跳帧处理)
在这里插入图片描述

结论

通过本文的介绍和示例代码,我们详细阐述了如何基于KV Cache构建流式帧级别Transformer并实现自回归解码。这种方法不仅能有效处理长序列数据,还能显著提升计算效率。希望这篇文章能帮助读者更好地理解和应用流式帧级别Transformer模型。

通过实践和调整参数,读者可以进一步优化模型性能,以满足不同任务的需求。流式帧级别Transformer的应用前景广泛,无论是在自然语言处理、语音识别还是其他序列数据处理领域,都有很大的潜力。


网站公告

今日签到

点亮在社区的每一天
去签到