图像处理 -- 仿射变换之Affine Transformation

发布于:2024-08-20 ⋅ 阅读:(38) ⋅ 点赞:(0)

仿射变换(Affine Transformation)

仿射变换是图像处理中的一种基本操作,通过线性变换和平移实现图像的几何变换。仿射变换包括旋转、缩放、平移、翻转、错切(shear)等操作。

1. 仿射变换的作用
  • 旋转:将图像绕一个固定点(通常是图像中心)旋转一定角度。
  • 缩放:对图像进行放大或缩小,改变图像的尺寸。
  • 平移:将图像在平面上移动到指定位置。
  • 翻转:沿特定轴将图像反转,比如水平或垂直翻转。
  • 错切:将图像的某一个方向拉伸,使图像产生倾斜效果。

仿射变换在计算机视觉和图像处理中的应用非常广泛,比如在图像配准、目标检测、图像增强等领域中都可以看到仿射变换的身影。

2. 数学实现原理

仿射变换通过一个矩阵乘法和一个向量加法来实现。假设二维空间中的一个点的坐标为 ( x , y ) (x, y) (x,y),经过仿射变换后,该点的新坐标为 ( x ′ , y ′ ) (x', y') (x,y)。则有如下数学表达式:

( x ′ y ′ ) = ( a b c d ) ( x y ) + ( e f ) \begin{pmatrix} x' \\ y' \\ \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \\ \end{pmatrix} \begin{pmatrix} x \\ y \\ \end{pmatrix} + \begin{pmatrix} e \\ f \\ \end{pmatrix} (xy)=(acbd)(xy)+(ef)

这里, ( a b c d ) \begin{pmatrix} a & b \\ c & d \end{pmatrix} (acbd) 是 2x2 仿射变换矩阵, ( e f ) \begin{pmatrix} e \\ f \end{pmatrix} (ef) 是平移向量。

具体仿射变换:
  1. 平移
    x ′ = x + e , y ′ = y + f x' = x + e, \quad y' = y + f x=x+e,y=y+f
    其中, e e e f f f 是平移量。

  2. 旋转
    x ′ = x ⋅ cos ⁡ ( θ ) − y ⋅ sin ⁡ ( θ ) , y ′ = x ⋅ sin ⁡ ( θ ) + y ⋅ cos ⁡ ( θ ) x' = x \cdot \cos(\theta) - y \cdot \sin(\theta), \quad y' = x \cdot \sin(\theta) + y \cdot \cos(\theta) x=xcos(θ)ysin(θ),y=xsin(θ)+ycos(θ)
    其中, θ \theta θ 是旋转角度。

  3. 缩放
    x ′ = x ⋅ s x , y ′ = y ⋅ s y x' = x \cdot s_x, \quad y' = y \cdot s_y x=xsx,y=ysy
    其中, s x s_x sx s y s_y sy 是在 x 轴和 y 轴上的缩放比例。

  4. 错切
    x ′ = x + λ y ⋅ y , y ′ = y + λ x ⋅ x x' = x + \lambda_y \cdot y, \quad y' = y + \lambda_x \cdot x x=x+λyy,y=y+λxx
    其中, λ x \lambda_x λx λ y \lambda_y λy 是在 x 轴和 y 轴上的错切系数。

3. 注意事项
  1. 矩阵可逆性:为了保证仿射变换能被逆变换,仿射变换矩阵 ( a b c d ) \begin{pmatrix} a & b \\ c & d \end{pmatrix} (acbd) 必须是非奇异的,即其行列式不为 0。这确保了变换后的图像可以通过逆变换恢复原状。

  2. 边界处理:仿射变换可能导致图像的一部分移出图像边界,或者图像空白区域增加。因此,通常需要对图像进行裁剪或填充处理。

  3. 插值方法:在仿射变换过程中,目标图像中的像素可能对应源图像中非整数坐标的点,因此需要使用插值方法(如最近邻插值、双线性插值或双三次插值)来计算这些点的像素值。

  4. 保持图像质量:频繁进行仿射变换可能导致图像质量下降,比如模糊、锯齿效应等。因此,在设计变换时需要考虑如何最小化质量损失。

  5. 变换顺序:如果需要执行多个变换,变换的顺序会影响最终结果。例如,旋转后再平移和先平移后旋转的结果是不一样的。因此,需要谨慎设计变换的顺序以达到预期效果。

C代码示例

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define IMAGE_WIDTH 1088
#define IMAGE_HEIGHT 1288
#define DEGREE_TO_RADIAN(deg) ((deg) * M_PI / 180.0)

// 图像数据结构
typedef struct {
    int width;
    int height;
    unsigned char *data; // 指向图像像素数据的指针
} Image;

// 从RAW8文件读取图像数据
Image *read_raw8_image(const char *filename, int width, int height) {
    FILE *file = fopen(filename, "rb");
    if (!file) {
        printf("无法打开文件 %s\n", filename);
        return NULL;
    }

    // 在堆上为图像数据分配内存
    unsigned char *data = (unsigned char *)malloc(width * height * sizeof(unsigned char));
    if (!data) {
        printf("内存分配失败\n");
        fclose(file);
        return NULL;
    }

    // 读取图像数据
    fread(data, sizeof(unsigned char), width * height, file);
    fclose(file);

    // 创建Image结构并返回
    Image *image = (Image *)malloc(sizeof(Image));
    image->width = width;
    image->height = height;
    image->data = data;

    return image;
}

// 将图像数据写入RAW8文件
void write_raw8_image(const char *filename, Image *image) {
    FILE *file = fopen(filename, "wb");
    if (!file) {
        printf("无法打开文件 %s\n", filename);
        return;
    }

    // 写入图像数据
    fwrite(image->data, sizeof(unsigned char), image->width * image->height, file);

    fclose(file);
}
// 释放图像内存
void free_image(Image *image) {
    if (image) {
        if (image->data) {
            free(image->data);
        }
        free(image);
    }
}

// 仿射变换函数:旋转图像
Image *affine_transform(Image *image, float angle) {
    int width = image->width;
    int height = image->height;

    // 角度转弧度
    float radians = DEGREE_TO_RADIAN(angle);
    float cos_theta = cos(radians);
    float sin_theta = sin(radians);

    // 中心点
    int center_x = width / 2;
    int center_y = height / 2;

    // 在堆上为旋转后的图像数据分配内存
    Image *rotated_image = (Image *)malloc(sizeof(Image));
    rotated_image->width = width;
    rotated_image->height = height;
    rotated_image->data = (unsigned char *)malloc(width * height * sizeof(unsigned char));

    // 初始化旋转后图像为0(黑色)
    for (int i = 0; i < width * height; i++) {
        rotated_image->data[i] = 0;
    }

    // 遍历原始图像的每一个像素
    for (int y = 0; y < height; y++) {
        for (int x = 0; x < width; x++) {
            // 计算相对于中心点的偏移
            int x_offset = x - center_x;
            int y_offset = y - center_y;

            // 进行仿射变换(旋转)
            int new_x = (int)(cos_theta * x_offset + sin_theta * y_offset) + center_x;
            int new_y = (int)(-sin_theta * x_offset + cos_theta * y_offset) + center_y;

            // 检查新坐标是否在图像范围内
            if (new_x >= 0 && new_x < width && new_y >= 0 && new_y < height) {
                rotated_image->data[new_y * width + new_x] = image->data[y * width + x];
            }
        }
    }

    return rotated_image;
}
int main() {
    // 读取RAW8图像
    Image *image = read_raw8_image("input.raw", IMAGE_WIDTH, IMAGE_HEIGHT);
    if (!image) {
        return 1;
    }

    // 对图像进行15度旋转
    Image *rotated_image = affine_transform(image, 15.0);

    // 保存旋转后的图像
    write_raw8_image("rotated_output.raw", rotated_image);

    // 释放内存
    free_image(image);
    free_image(rotated_image);

    return 0;
}