C++:红黑树的深度剖析和模拟

发布于:2024-09-05 ⋅ 阅读:(63) ⋅ 点赞:(0)

✨✨✨学习的道路很枯燥,希望我们能并肩走下来!


前言

本篇详细介绍了进一步介绍C++中的红黑树,让使用者对红黑树有更加深刻的认知,而不是仅仅停留在表面,更好的模拟,为了更好的使用. 文章可能出现错误,如有请在评论区指正,让我们一起交流,共同进步!


一  红黑树的概念

        红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或 Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路 径会比其他路径长出俩倍,因而是接近平衡的。

二  红黑树的性质

1. 每个结点不是红色就是黑色 

2. 根节点是黑色的 

3. 如果一个节点是红色的,则它的两个孩子结点是黑色的 

4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上(根到NIP节点为一条路径),均包含相同数目的黑色结点 

5. 每个叶子结点都是黑色的(此处的叶子结点指的是空结点)

 

三  红黑树节点的定义

// 节点的颜色
enum Color{RED, BLACK};
// 红黑树节点的定义
template<class T>
struct RBTreeNode
{
     RBTreeNode(const ValueType& data = ValueType(),Color color = RED)
         : _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr)
         , _data(data), _color(color)
     {}
     RBTreeNode<ValueType>* _pLeft;   // 节点的左孩子
     RBTreeNode<ValueType>* _pRight;  // 节点的右孩子
     RBTreeNode<ValueType>* _pParent; // 节点的双亲(红黑树需要旋转,为了实现简单给出该字段)
     T _data;            // 节点的值域
     Color _color;               // 节点的颜色
};

四  红黑树结构

        为了后续实现关联式容器简单,红黑树的实现中增加一个头结点,因为跟节点必须为黑色,为了 与根节点进行区分,将头结点给成黑色,并且让头结点的 pParent 域指向红黑树的根节点,pLeft 域指向红黑树中最小的节点,_pRight域指向红黑树中最大的节点,如下:

五  红黑树的插入操作

 红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可分为两步:

1. 按照二叉搜索的树规则插入新节点

2. 检测新节点插入后,红黑树的性质是否造到破坏 

因为新节点的默认颜色是红色(黑节点一定破坏规则4,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何性质则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连在一起的红色节点,此时需要对红黑树分情况来讨论: 

约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点 

        ⊚  情况一: cur为红,p为红,g为黑,u存在且为红

         ⊚  cur为红,p为红,g为黑,u不存在/u存在且为黑

         ⊚  情况三: cur为红,p为红,g为黑,u不存在/u存在且为黑(双旋转处理)

 插入代码如下:

bool Insert(const T& data)
{
	if (_root == nullptr)
	{
		_root = new Node(data);
		_root->_col = BLACK;
		return true;
	}

	KeyOfT kot;
	Node* parent = nullptr;
	Node* cur = _root;
	while (cur)
	{
		if (kot(cur->_data) < kot(data))
		{
			parent = cur;
			cur = cur->_right;
		}
		else if (kot(cur->_data) > kot(data))
		{
			parent = cur;
			cur = cur->_left;
		}
		else
		{
			return false;
		}
	}

	cur = new Node(data);
	// 新增节点。颜色红色给红色
	cur->_col = RED;
	if (kot(parent->_data) < kot(data))
	{
		parent->_right = cur;
	}
	else
	{
		parent->_left = cur;
	}
	cur->_parent = parent;

	while (parent && parent->_col == RED)
	{
		Node* grandfather = parent->_parent;
		//    g
		//  p   u
		if (parent == grandfather->_left)
		{
			Node* uncle = grandfather->_right;
			if (uncle && uncle->_col == RED)
			{
				// u存在且为红 -》变色再继续往上处理
				parent->_col = uncle->_col = BLACK;
				grandfather->_col = RED;

				cur = grandfather;
				parent = cur->_parent;
			}
			else
			{
				// u存在且为黑或不存在 -》旋转+变色
				if (cur == parent->_left)
				{
					//    g
					//  p   u
					//c
					//单旋
					RotateR(grandfather);
					parent->_col = BLACK;
					grandfather->_col = RED;
				}
				else
				{
					//    g
					//  p   u
					//    c
					//双旋
					RotateL(parent);
					RotateR(grandfather);

					cur->_col = BLACK;
					grandfather->_col = RED;
				}

				break;
			}
		}
		else
		{
			//    g
			//  u   p
			Node* uncle = grandfather->_left;
			// 叔叔存在且为红,-》变色即可
			if (uncle && uncle->_col == RED)
			{
				parent->_col = uncle->_col = BLACK;
				grandfather->_col = RED;

				// 继续往上处理
				cur = grandfather;
				parent = cur->_parent;
			}
			else // 叔叔不存在,或者存在且为黑
			{
				// 情况二:叔叔不存在或者存在且为黑
				// 旋转+变色
				//      g
				//   u     p
				//            c
				if (cur == parent->_right)
				{
					RotateL(grandfather);
					parent->_col = BLACK;
					grandfather->_col = RED;
				}
				else
				{
					//		g
					//   u     p
					//      c
					RotateR(parent);
					RotateL(grandfather);
					cur->_col = BLACK;
					grandfather->_col = RED;
				}
				break;
			}
		}
	}

	_root->_col = BLACK;

	return true;
}

六  红黑树的验证 

红黑树的检测分为两步:

        1. 检测其是否满足二叉搜索树(中序遍历是否为有序序列)

void _InOrder(Node* root)
{
	if (root == nullptr)
	{
		return;
	}

	_InOrder(root->_left);
	cout << root->_kv.first << ":" << root->_kv.second << endl;
	_InOrder(root->_right);
}

        2. 检测其是否满足红黑树的性质 

bool IsBalance()
{
    if (_root == nullptr)
        return true;
    if (_root->_col == RED) //检测根是否为黑色
    {
        cout << "异常:根为红色" << endl;
        return false;
    }
 
    // 预先求出某条路径的黑色节点数量
    size_t blackcount = 0;
    Node *cur = _root;
    while (cur)
    {
        if (cur->_col == BLACK)
            blackcount++;
        cur = cur->_left;
    }
 
    size_t k = 0; //作为参数传入,用于统计路径的黑色节点数量
    return _IsBalance(_root, k, blackcount);
}
 
bool _IsBalance(Node *root, size_t k, size_t blackcount)
{
    if (root == nullptr) //走到路径结尾
    {
        if (k != blackcount)
        {
            cout << "异常:路径黑节点数目不同" << endl;
            return false;
        }
        return true;
    }
    if (root->_col == RED && root->_parent->_col == RED) //判断是否有连续红节点
    {
        cout << "异常:出现连续红节点" << endl;
        return false;
    }
    if (root->_col == BLACK) //统计黑色节点数量
        k++;
 
    return _IsBalance(root->_left, k, blackcount) 
    && _IsBalance(root->_right, k, blackcount); //进行递归
}

七  红黑树的删除

红黑树的删除本节不做讲解,参考《算法导论》或者《STL源码剖析》

红黑树 - _Never_ - 博客园 (cnblogs.com)

八  红黑树与AVL树的比较 

        红黑树和AVL树都是高效的平衡二叉树,增删改查的时间复杂度都是O($log_2 N$),红黑树不追 求绝对平衡,其只需保证最长路径不超过最短路径的2倍,相对而言,降低了插入和旋转的次数, 所以在经常进行增删的结构中性能比AVL树更优,而且红黑树实现比较简单,所以实际运用中红黑树更多。 

九  红黑树的迭代器 

        迭代器的好处是可以方便遍历,是数据结构的底层实现与用户透明。如果想要给红黑树增加迭代 器,需要考虑以前问题: 

        ⊚  begin()与end() :

        STL明确规定,begin()与end()代表的是一段前闭后开的区间,而对红黑树进行中序遍历后, 可以得到一个有序的序列,因此:begin()可以放在红黑树中最小节点(即最左侧节点)的位置,end()放在最大节点(最右侧节点)的下一个位置,关键是最大节点的下一个位置在哪块? 能否给成nullptr呢?答案是行不通的,因为对end()位置的迭代器进行--操作,必须要能找最后一个元素,此处就不行,因此最好的方式是将end()放在头结点的位置

        ⊚  operator++()与operator--() 

 operator++():

//typedef RBTreeIterator<T> Self;
Self& operator++()
{
	if (_node->_right)
	{
		// 右不为空,右子树最左节点就是中序下一个
		Node* leftMost = _node->_right;
		while (leftMost->_left)
		{
			leftMost = leftMost->_left;
		}

		_node = leftMost;
	}
	else
	{
		Node* cur = _node;
		Node* parent = cur->_parent;
		while (parent && cur == parent->_right)
		{
			cur = parent;
			parent = cur->_parent;
		}

		_node = parent;
	}

	return *this;
}

  operator--():

Self& operator--()
{
	//分三种情况讨论:_pNode 在head的位置,_pNode 左子树存在,_pNode 左子树不
	//存在
		// 1. _pNode 在head的位置,--应该将_pNode放在红黑树中最大节点的位置
		if (_node->_parent->_parent == _node && _node->_col == RED)
			_node = _node->_right;
		else if (_node->_left)
		{
			// 2. _pNode的左子树存在,在左子树中找最大的节点,即左子树中最右侧节点
			_node = _node->_left;
			while (_node->_right)
				_node = _node->_right;
		}
		else
		{
			// _pNode的左子树不存在,只能向上找
			Node pParent = _node->_parent;
			while (_node == pParent->_left)
			{
				_node = pParent;
				pParent = _node->_parent;
			}
			_node = pParent;
		}
}

迭代器全代码:

template<class T>
struct RBTreeIterator
{
	typedef RBTreeNode<T> Node;
	typedef RBTreeIterator<T> Self;

	Node* _node;

	RBTreeIterator(Node* node)
		:_node(node)
	{}

	Self& operator++()
	{
		if (_node->_right)
		{
			// 右不为空,右子树最左节点就是中序下一个
			Node* leftMost = _node->_right;
			while (leftMost->_left)
			{
				leftMost = leftMost->_left;
			}

			_node = leftMost;
		}
		else
		{
			Node* cur = _node;
			Node* parent = cur->_parent;
			while (parent && cur == parent->_right)
			{
				cur = parent;
				parent = cur->_parent;
			}

			_node = parent;
		}

		return *this;
	}
	
	Self& operator--()
	{
		//分三种情况讨论:_pNode 在head的位置,_pNode 左子树存在,_pNode 左子树不
		//存在
			// 1. _pNode 在head的位置,--应该将_pNode放在红黑树中最大节点的位置
			if (_node->_parent->_parent == _node && _node->_col == RED)
				_node = _node->_right;
			else if (_node->_left)
			{
				// 2. _pNode的左子树存在,在左子树中找最大的节点,即左子树中最右侧节点
				_node = _node->_left;
				while (_node->_right)
					_node = _node->_right;
			}
			else
			{
				// _pNode的左子树不存在,只能向上找
				Node pParent = _node->_parent;
				while (_node == pParent->_left)
				{
					_node = pParent;
					pParent = _node->_parent;
				}
				_node = pParent;
			}
	}

	T& operator*()
	{
		return _node->_data;
	}

	bool operator!= (const Self& s)
	{
		return _node != s._node;
	}
};

十  红黑树全代码

#pragma once
#include<iostream>
#include<vector>
#include<assert.h>
using namespace std;

enum Colour
{
	RED,
	BLACK
};

template<class T>
struct RBTreeNode
{
	T _data;

	RBTreeNode<T>* _left;
	RBTreeNode<T>* _right;
	RBTreeNode<T>* _parent;
	Colour _col;

	RBTreeNode(const T& data)
		: _data(data)
		, _left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
	{}
};

template<class T>
struct RBTreeIterator
{
	typedef RBTreeNode<T> Node;
	typedef RBTreeIterator<T> Self;

	Node* _node;

	RBTreeIterator(Node* node)
		:_node(node)
	{}

	Self& operator++()
	{
		if (_node->_right)
		{
			// 右不为空,右子树最左节点就是中序下一个
			Node* leftMost = _node->_right;
			while (leftMost->_left)
			{
				leftMost = leftMost->_left;
			}

			_node = leftMost;
		}
		else
		{
			Node* cur = _node;
			Node* parent = cur->_parent;
			while (parent && cur == parent->_right)
			{
				cur = parent;
				parent = cur->_parent;
			}

			_node = parent;
		}

		return *this;
	}
	
	Self& operator--()
	{
		//分三种情况讨论:_pNode 在head的位置,_pNode 左子树存在,_pNode 左子树不
		//存在
			// 1. _pNode 在head的位置,--应该将_pNode放在红黑树中最大节点的位置
			if (_node->_parent->_parent == _node && _node->_col == RED)
				_node = _node->_right;
			else if (_node->_left)
			{
				// 2. _pNode的左子树存在,在左子树中找最大的节点,即左子树中最右侧节点
				_node = _node->_left;
				while (_node->_right)
					_node = _node->_right;
			}
			else
			{
				// _pNode的左子树不存在,只能向上找
				Node pParent = _node->_parent;
				while (_node == pParent->_left)
				{
					_node = pParent;
					pParent = _node->_parent;
				}
				_node = pParent;
			}
	}

	T& operator*()
	{
		return _node->_data;
	}

	bool operator!= (const Self& s)
	{
		return _node != s._node;
	}
};

template<class K, class T, class KeyOfT>
class RBTree
{
	typedef RBTreeNode<T> Node;
public:
	typedef RBTreeIterator<T> Iterator;

	Iterator Begin()
	{
		Node* leftMost = _root;
		while (leftMost && leftMost->_left)
		{
			leftMost = leftMost->_left;
		}

		return Iterator(leftMost);
	}

	Iterator End()
	{
		return Iterator(nullptr);
	}

	RBTree() = default;

	RBTree(const RBTree& t)
	{
		_root = Copy(t._root);
	}

	RBTree& operator=(RBTree t)
	{
		swap(_root, t._root);
		return *this;
	}

	~RBTree()
	{
		Destroy(_root);
		_root = nullptr;
	}

	bool Insert(const T& data)
	{
		if (_root == nullptr)
		{
			_root = new Node(data);
			_root->_col = BLACK;
			return true;
		}

		KeyOfT kot;
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (kot(cur->_data) < kot(data))
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (kot(cur->_data) > kot(data))
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}

		cur = new Node(data);
		// 新增节点。颜色红色给红色
		cur->_col = RED;
		if (kot(parent->_data) < kot(data))
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}
		cur->_parent = parent;

		while (parent && parent->_col == RED)
		{
			Node* grandfather = parent->_parent;
			//    g
			//  p   u
			if (parent == grandfather->_left)
			{
				Node* uncle = grandfather->_right;
				if (uncle && uncle->_col == RED)
				{
					// u存在且为红 -》变色再继续往上处理
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;

					cur = grandfather;
					parent = cur->_parent;
				}
				else
				{
					// u存在且为黑或不存在 -》旋转+变色
					if (cur == parent->_left)
					{
						//    g
						//  p   u
						//c
						//单旋
						RotateR(grandfather);
						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					else
					{
						//    g
						//  p   u
						//    c
						//双旋
						RotateL(parent);
						RotateR(grandfather);

						cur->_col = BLACK;
						grandfather->_col = RED;
					}

					break;
				}
			}
			else
			{
				//    g
				//  u   p
				Node* uncle = grandfather->_left;
				// 叔叔存在且为红,-》变色即可
				if (uncle && uncle->_col == RED)
				{
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;

					// 继续往上处理
					cur = grandfather;
					parent = cur->_parent;
				}
				else // 叔叔不存在,或者存在且为黑
				{
					// 情况二:叔叔不存在或者存在且为黑
					// 旋转+变色
					//      g
					//   u     p
					//            c
					if (cur == parent->_right)
					{
						RotateL(grandfather);
						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					else
					{
						//		g
						//   u     p
						//      c
						RotateR(parent);
						RotateL(grandfather);
						cur->_col = BLACK;
						grandfather->_col = RED;
					}
					break;
				}
			}
		}

		_root->_col = BLACK;

		return true;
	}

	void InOrder()
	{
		_InOrder(_root);
		cout << endl;
	}

	int Height()
	{
		return _Height(_root);
	}

	int Size()
	{
		return _Size(_root);
	}

	bool IsBalance()
	{
		if (_root == nullptr)
			return true;

		if (_root->_col == RED)
		{
			return false;
		}

		// 参考值
		int refNum = 0;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_col == BLACK)
			{
				++refNum;
			}

			cur = cur->_left;
		}

		return Check(_root, 0, refNum);
	}

	Node* Find(const K& key)
	{
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < key)
			{
				cur = cur->_right;
			}
			else if (cur->_kv.first > key)
			{
				cur = cur->_left;
			}
			else
			{
				return cur;
			}
		}

		return nullptr;
	}

private:
	bool Check(Node* root, int blackNum, const int refNum)
	{
		if (root == nullptr)
		{
			//cout << blackNum << endl;
			if (refNum != blackNum)
			{
				cout << "存在黑色节点的数量不相等的路径" << endl;
				return false;
			}

			return true;
		}

		if (root->_col == RED && root->_parent->_col == RED)
		{
			cout << root->_kv.first << "存在连续的红色节点" << endl;
			return false;
		}

		if (root->_col == BLACK)
		{
			blackNum++;
		}

		return Check(root->_left, blackNum, refNum)
			&& Check(root->_right, blackNum, refNum);
	}

	int _Size(Node* root)
	{
		return root == nullptr ? 0 : _Size(root->_left) + _Size(root->_right) + 1;
	}

	int _Height(Node* root)
	{
		if (root == nullptr)
			return 0;

		int leftHeight = _Height(root->_left);
		int rightHeight = _Height(root->_right);

		return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
	}

	void _InOrder(Node* root)
	{
		if (root == nullptr)
		{
			return;
		}

		_InOrder(root->_left);
		cout << root->_kv.first << ":" << root->_kv.second << endl;
		_InOrder(root->_right);
	}

	void RotateL(Node* parent)
	{
		_rotateNum++;
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		parent->_right = subRL;
		if (subRL)
			subRL->_parent = parent;

		Node* parentParent = parent->_parent;

		subR->_left = parent;
		parent->_parent = subR;

		if (parentParent == nullptr)
		{
			_root = subR;
			subR->_parent = nullptr;
		}
		else
		{
			if (parent == parentParent->_left)
			{
				parentParent->_left = subR;
			}
			else
			{
				parentParent->_right = subR;
			}

			subR->_parent = parentParent;
		}
	}

	void  RotateR(Node* parent)
	{
		_rotateNum++;

		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;

		Node* parentParent = parent->_parent;

		subL->_right = parent;
		parent->_parent = subL;

		if (parentParent == nullptr)
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			if (parent == parentParent->_left)
			{
				parentParent->_left = subL;
			}
			else
			{
				parentParent->_right = subL;
			}

			subL->_parent = parentParent;
		}

	}

	void Destroy(Node* root)
	{
		if (root == nullptr)
			return;

		Destroy(root->_left);
		Destroy(root->_right);
		delete root;
	}

	Node* Copy(Node* root)
	{
		if (root == nullptr)
			return nullptr;

		Node* newRoot = new Node(root->_kv);
		newRoot->_left = Copy(root->_left);
		newRoot->_right = Copy(root->_right);

		return newRoot;
	}

private:
	Node* _root = nullptr;
public:
	int _rotateNum = 0; //旋转次数
};

总结

✨✨✨各位读友,本篇分享到内容是否更好的让你理解红黑树,如果对你有帮助给个👍赞鼓励一下吧!!
🎉🎉🎉世上没有绝望的处境,只有对处境绝望的人。
感谢每一位一起走到这的伙伴,我们可以一起交流进步!!!一起加油吧!!