数学分析原理答案——第三章 习题17

发布于:2024-09-17 ⋅ 阅读:(50) ⋅ 点赞:(0)

【第三章 习题17】

固定 α > 1 \alpha > 1 α>1。取 x 1 > α x_{1} > \sqrt{\alpha} x1>α 且定义

x n + 1 = α + x n 1 + x n = x n + α − x n 2 1 + x n x_{n + 1} = \frac{\alpha + x_{n}}{1 + x_{n}} = x_{n} + \frac{\alpha - x_{n}^{2}}{1 + x_{n}} xn+1=1+xnα+xn=xn+1+xnαxn2

a. 证明 x 1 > x 3 > x 5 > … x_{1} > x_{3} > x_{5} > \ldots x1>x3>x5>

b. 证明 x 2 < x 4 < x 6 < … x_{2} < x_{4} < x_{6} < \ldots x2<x4<x6<

c. 证明 lim ⁡ x n = α \lim x_{n} = \sqrt{\alpha} limxn=α

d. 将这种方法的收敛速度与习题16中所述方法的收敛速度相比较

【解】

首先

x n + 1 − α = x n − α − ( x n − α ) ( x n + α ) 1 + x n x_{n + 1} - \sqrt{\alpha} = x_{n} - \sqrt{\alpha} - \frac{\left( x_{n} - \sqrt{\alpha} \right)\left( x_{n} + \sqrt{\alpha} \right)}{1 + x_{n}} xn+1α =xnα 1+xn(xnα )(xn+α )

= ( x n − α ) ( 1 − x n + α 1 + x n ) = ( x n − α ) 1 − α 1 + x n = \left( x_{n} - \sqrt{\alpha} \right)\left( 1 - \frac{x_{n} + \sqrt{\alpha}}{1 + x_{n}} \right) = \left( x_{n} - \sqrt{\alpha} \right)\frac{1 - \sqrt{\alpha}}{1 + x_{n}} =(xnα )(11+xnxn+α )=(xnα )1+xn1α

由于 x 1 > α x_{1} > \sqrt{\alpha} x1>α α > 1 \alpha > 1 α>1,而

1 − α 1 + x n < 0 \frac{1 - \sqrt{\alpha}}{1 + x_{n}} < 0 1+xn1α <0

所以 x 2 , x 4 , x 6 … < α x_{2},x_{4},x_{6}\ldots < \sqrt{\alpha} x2,x4,x6<α x 1 , x 3 , x 5 … > α x_{1},x_{3},x_{5}\ldots > \sqrt{\alpha} x1,x3,x5>α

又因为

x n + 1 = α + x n 1 + x n = 1 + α − 1 1 + x n x_{n + 1} = \frac{\alpha + x_{n}}{1 + x_{n}} = 1 + \frac{\alpha - 1}{1 + x_{n}} xn+1=1+xnα+xn=1+1+xnα1

所以 x 1 , x 2 , x 3 … > 0 x_{1},x_{2},x_{3}\ldots > 0 x1,x2,x3>0,而

因为

x n + 2 − α = ( x n + 1 − α ) 1 − α 1 + x n + 1 x_{n + 2} - \sqrt{\alpha} = \left( x_{n + 1} - \sqrt{\alpha} \right)\frac{1 - \sqrt{\alpha}}{1 + x_{n + 1}} xn+2α =(xn+1α )1+xn+11α

= ( x n − α ) 1 − α 1 + x n 1 − α 1 + x n + 1 = ( x n − α ) ( 1 − α ) 2 1 + x n + α + x n = \left( x_{n} - \sqrt{\alpha} \right)\frac{1 - \sqrt{\alpha}}{1 + x_{n}}\frac{1 - \sqrt{\alpha}}{1 + x_{n + 1}} = \left( x_{n} - \sqrt{\alpha} \right)\frac{\left( 1 - \sqrt{\alpha} \right)^{2}}{1 + x_{n} + \alpha + x_{n}} =(xnα )1+xn1α 1+xn+11α =(xnα )1+xn+α+xn(1α )2

其中

( 1 − α ) 2 1 + x n + α + x n < ( 1 − α ) 2 1 + α < 1 \frac{\left( 1 - \sqrt{\alpha} \right)^{2}}{1 + x_{n} + \alpha + x_{n}} < \frac{\left( 1 - \sqrt{\alpha} \right)^{2}}{1 + \alpha} < 1 1+xn+α+xn(1α )2<1+α(1α )2<1

lim ⁡ ( 1 − α ) 2 1 + x n + α + x n = ( 1 − α ) 2 ( 1 + α ) 2 \lim\frac{\left( 1 - \sqrt{\alpha} \right)^{2}}{1 + x_{n} + \alpha + x_{n}} = \frac{\left( 1 - \sqrt{\alpha} \right)^{2}}{\left( 1 + \sqrt{\alpha} \right)^{2}} lim1+xn+α+xn(1α )2=(1+α )2(1α )2

所以(a)(b)(c)成立。

所以它的收敛速度大约是线性收敛(几何衰减),收敛速度远不如16题中的平方收敛。