NCBI-get-spesis-ref-IDs_fast.py

发布于:2024-09-18 ⋅ 阅读:(54) ⋅ 点赞:(0)
import requests
import os
import re

def download_genome_first(gcf_id):
    # 根据GCF或者GCA号动态选择base_url
    if gcf_id.startswith("GCF"):
        base_url = "https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/"
    elif gcf_id.startswith("GCA"):
        base_url = "https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/"
    else:
        print(f"Invalid ID: {gcf_id}. Skipping...")
        return

    # 提取GCF/GCA号的数字部分并按三位分割
    parts = gcf_id.split('_')[1]  # 提取数字部分
    path_parts = [parts[i:i + 3] for i in range(0, len(parts), 3)]
    path_parts.pop()
    ftp_path = base_url + "/".join(path_parts)
    #print(f"Downloading from {ftp_path}")

    # 下载文件
    try:
        kv = {'user-Agent': 'Mozilla/5.0'}
        response = requests.get(ftp_path, headers=kv)
        response.encoding = response.apparent_encoding
    except Exception as e:
        print(f"第一次爬取失败: {e}")
        return

    html = response.text
    pattern = rf'<a href="({gcf_id}[^/]+)/">'
    url = re.findall(pattern, html)
    if not url:
        print(f"未找到匹配的目录: {gcf_id}")
        return

    url_2 = ftp_path + '/' + url[0] + '/' + url[0] + '_genomic.fna.gz'
    print(url_2)

    try:
        response_2 = requests.get(url_2, headers=kv)
    except Exception as e:
        print(f"第二次爬取失败: {e}")
        return

    # 检查请求是否成功
    if response_2.status_code == 200:
        # 从URL中提取文件名
        file_name = url_2.split("/")[-1]

        # 创建完整的文件路径
        file_path = os.path.join(output_dir, file_name)
        os.makedirs(output_dir, exist_ok=True)

        # 将下载的内容写入文件
        with open(file_path, 'wb') as file:
            file.write(response_2.content)
        print(f"Downloaded {file_name} to {output_dir}")
    else:
        print(f"Failed to download file from {url_2}. Status code: {response_2.status_code}")

def batch_download(gcf_file):
    # 读取GCF/GCA编号列表
    with open(gcf_file, 'r') as file:
        gcf_ids = [line.strip() for line in file.readlines()]

    # 批量下载
    for gcf_id in gcf_ids:
        print(f"Processing: {gcf_id}")
        download_genome_first(gcf_id)

# 使用示例
gcf_file = "./species-gcaids.txt"
# 这里是储存GCF/GCA号的txt文件存储路径
output_dir = "./downloads"
# 此处的下载文件存储的目录可以进行修改
batch_download(gcf_file)
print("所有文件已经下载完毕!")