一、C++11
1.列表初始化
在C++98中,标准允许使用花括号{}对数组或者结构体元素进行统一的列表初始值设定。比如:
struct Point
{
int _x;
int _y;
};
int main()
{
int array1[] = { 1, 2, 3, 4, 5 };
int array2[5] = { 0 };
Point p = { 1, 2 };
return 0;
}
C++11扩大了用大括号括起的列表(初始化列表)的使用范围,使其可用于所有的内置类型和用户自 定义的类型,使用初始化列表时,可添加等号(=),也可不添加。
struct Point
{
int _x;
int _y;
};
int main()
{
int x1 = 1;
int x2{ 2 };
int array1[]{ 1, 2, 3, 4, 5 };
int array2[5]{ 0 };
Point p{ 1, 2 };
// C++11中列表初始化也可以适用于new表达式中
int* pa = new int[4] { 0 };
return 0;
}
创建对象时也可以使用列表初始化方式调用构造函数初始化
class Date
{
public:
Date(int year, int month, int day)
:_year(year)
, _month(month)
, _day(day)
{
cout << "Date(int year, int month, int day)" << endl;
}
private:
int _year;
int _month;
int _day;
};
int main()
{
Date d1(2022, 1, 1); // old style
// C++11支持的列表初始化,这里会调用构造函数初始化
Date d2{ 2022, 1, 2 };
Date d3 = { 2022, 1, 3 };
return 0;
}
问:
std::initializer_list是什么类型?
#include <iostream>
using namespace std;
int main()
{
// the type of il is an initializer_list
auto il = { 10, 20, 30 };
cout << typeid(il).name() << endl; //class std::initializer_list<int>
return 0;
}
std::initializer_list一般是作为构造函数的参数,C++11对STL中的不少容器就增加std::initializer_list作为参数的构造函数,这样初始化容器对象就更方便了。也可以作为operator=的参数,这样就可以用大括号赋值
2.变量类型推导
c++11提供了多种简化声明的方式,尤其是在使用模板时
1)auto
在C++98中auto是一个存储类型的说明符,表明变量是局部自动存储类型,但是局部域中定义局 部的变量默认就是自动存储类型,所以auto就没什么价值了。C++11中废弃auto原来的用法,将 其用于实现自动类型推断。这样要求必须进行显示初始化,让编译器将定义对象的类型设置为初始化值的类型。
int main()
{
int i = 10;
auto p = &i;
auto pf = strcpy;
cout << typeid(p).name() << endl;
cout << typeid(pf).name() << endl;
map<string, string> dict = { {"sort", "排序"}, {"insert", "插入"} };
//map<string, string>::iterator it = dict.begin();
auto it = dict.begin();
return 0;
}
2)decltype
关键字decltype将变量的类型声明为表达式指定的类型。
// decltype的一些使用使用场景
template<class T1, class T2>
void F(T1 t1, T2 t2)
{
decltype(t1 * t2) ret;
cout << typeid(ret).name() << endl;
}
int main()
{
const int x = 1;
double y = 2.2;
decltype(x * y) ret; // ret的类型是double
decltype(&x) p; // p的类型是int*
cout << typeid(ret).name() << endl;
cout << typeid(p).name() << endl;
F(1, 'a');
return 0;
}
3)nullptr
由于C++中NULL被定义成字面量0,这样就可能回带来一些问题,因为0既能指针常量,又能表示 整形常量。所以出于清晰和安全的角度考虑,C++11中新增了nullptr,用于表示空指针。
#ifndef NULL
#ifdef __cplusplus
#define NULL 0
#else
#define NULL ((void *)0)
#endif
#endif
3.范围for
范围for遍历
格式:
for(变量:可迭代对象)
举个例子
#include <iostream>
#include <vector>
using namespace std;
int main()
{
vector<int>v{ 1,2,3,4,5,6,7,8,9,10 };
for (int& x : v) //这里也可以换成自动推导类型auto
cout << x << ' ';
//1 2 3 4 5 6 7 8 9 10
return 0;
}
范围遍历不能适用于所有情况,范围遍历的条件就是循环迭代的范围必须是可确定的。例如`string`、`array`、`vector`、`list`、`map`等都是可以正常使用的。而用户自定义写的类则需要自行提供**自增运算符重载**和**赋值运算符重载**。
4.右值引用的移动语义
参考之前的
5.lambda匿名函数
在C++98中,如果想要对一个数据集合中的元素进行排序,可以使用std::sort方法。
#include <algorithm>
#include <functional>
int main()
{
int array[] = { 4,1,8,5,3,7,0,9,2,6 };
// 默认按照小于比较,排出来结果是升序
std::sort(array, array + sizeof(array) / sizeof(array[0]));
// 如果需要降序,需要改变元素的比较规则
std::sort(array, array + sizeof(array) / sizeof(array[0]), greater<int>());
return 0;
}
如果待排序元素为自定义类型,需要用户定义排序时的比较规则:
#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
using namespace std;
struct Goods
{
string _name; // 名字
double _price; // 价格
int _evaluate; // 评价
Goods(const char* str, double price, int evaluate)
:_name(str)
, _price(price)
, _evaluate(evaluate)
{}
};
struct ComparePriceLess
{
bool operator()(const Goods& gl, const Goods& gr)
{
return gl._price < gr._price;
}
};
struct ComparePriceGreater
{
bool operator()(const Goods& gl, const Goods& gr)
{
return gl._price > gr._price;
}
};
int main()
{
vector<Goods> v = { { "苹果", 2.1, 5 }, { "香蕉", 3, 4 }, { "橙子", 2.2,
3 }, { "菠萝", 1.5, 4 } };
sort(v.begin(), v.end(), ComparePriceLess());
sort(v.begin(), v.end(), ComparePriceGreater());
}
lambda函数
int main()
{
vector<Goods> v = { { "苹果", 2.1, 5 }, { "香蕉", 3, 4 }, { "橙子", 2.2,
3 }, { "菠萝", 1.5, 4 } };
sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2){
return g1._price < g2._price; });
sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2){
return g1._price > g2._price; });
sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2){
return g1._evaluate < g2._evaluate; });
sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2){
return g1._evaluate > g2._evaluate; });
}
上述代码就是使用C++11中的lambda表达式来解决,可以看出lambda表达式实际是一个匿名函 数。
**lambda表达式语法 **
lambda表达式书写格式:[capture-list] (parameters) mutable -> return-type { statement }
lambda表达式各部分说明:
- [capture-list] : 捕捉列表,该列表总是出现在lambda函数的开始位置,编译器根据[]来 判断接下来的代码是否为lambda函数,捕捉列表能够捕捉上下文中的变量供lambda 函数使用
- (parameters):参数列表。与普通函数的参数列表一致,如果不需要参数传递,则可以 连同()一起省略
- mutable:默认情况下,lambda函数总是一个const函数,mutable可以取消其常量 性。使用该修饰符时,参数列表不可省略(即使参数为空)。
- ->returntype:返回值类型。用追踪返回类型形式声明函数的返回值类型,没有返回 值时此部分可省略。返回值类型明确情况下,也可省略,由编译器对返回类型进行推 导。
- {statement}:函数体。在该函数体内,除了可以使用其参数外,还可以使用所有捕获 到的变量。
注意:
在lambda函数定义中,参数列表和返回值类型都是可选部分,而捕捉列表和函数体可以为 空。因此C++11中最简单的lambda函数为:[]{}; 该lambda函数不能做任何事情。
int main() { // 最简单的lambda表达式, 该lambda表达式没有任何意义 []{}; // 省略参数列表和返回值类型,返回值类型由编译器推导为int int a = 3, b = 4; [=]{return a + 3; }; // 省略了返回值类型,无返回值类型 auto fun1 = [&](int c){b = a + c; }; fun1(10) cout<<a<<" "<<b<<endl; // 各部分都很完善的lambda函数 auto fun2 = [=, &b](int c)->int{return b += a+ c; }; cout<<fun2(10)<<endl; // 复制捕捉x int x = 10; auto add_x = [x](int a) mutable { x *= 2; return a + x; }; cout << add_x(10) << endl; return 0; }
通过上述例子可以看出,lambda表达式实际上可以理解为无名函数,该函数无法直接调 用,如果想要直接调用,可借助auto将其赋值给一个变量。
捕获列表说明
捕捉列表描述了上下文中那些数据可以被lambda使用,以及使用的方式传值还是传引用。
- [var]:表示值传递方式捕捉变量var
- [=]:表示值传递方式捕获所有父作用域中的变量(包括this)
- [&var]:表示引用传递捕捉变量var
- [&]:表示引用传递捕捉所有父作用域中的变量(包括this)
- [this]:表示值传递方式捕捉当前的this指针
注意
a. 父作用域指包含lambda函数的语句块
b. 语法上捕捉列表可由多个捕捉项组成,并以逗号分割。 比如:[=, &a, &b]:以引用传递的方式捕捉变量a和b,值传递方式捕捉其他所有变量 [&,a, this]:值传递方式捕捉变量a和this,引用方式捕捉其他变量
c. 捕捉列表不允许变量重复传递,否则就会导致编译错误。 比如:[=, a]:=已经以值传递方式捕捉了所有变量,捕捉a重复
d. 在块作用域以外的lambda函数捕捉列表必须为空。
e. 在块作用域中的lambda函数仅能捕捉父作用域中局部变量,捕捉任何非此作用域或者 非局部变量都会导致编译报错。
f. lambda表达式之间不能相互赋值,即使看起来类型相同
void (*PF)(); int main() { auto f1 = [] {cout << "hello world" << endl; }; auto f2 = [] {cout << "hello world" << endl; }; // 此处先不解释原因,等lambda表达式底层实现原理看完后,大家就清楚了 //f1 = f2; // 编译失败--->提示找不到operator=() // 允许使用一个lambda表达式拷贝构造一个新的副本 auto f3(f2); f3(); // 可以将lambda表达式赋值给相同类型的函数指针 PF = f2; PF(); return 0; }
函数对象与lambda表达式
函数对象,又称为仿函数,即可以想函数一样使用的对象,就是在类中重载了operator()运算符的类对象。
class Rate
{
public:
Rate(double rate) : _rate(rate)
{}
double operator()(double money, int year)
{
return money * _rate * year;
}
private:
double _rate;
};
int main()
{
// 函数对象
double rate = 0.49;
Rate r1(rate);
r1(10000, 2);
// lamber
auto r2 = [=](double monty, int year)->double {return monty * rate * year;
};
r2(10000, 2);
return 0;
}
从使用方式上来看,函数对象与lambda表达式完全一样。 函数对象将rate作为其成员变量,在定义对象时给出初始值即可,lambda表达式通过捕获列表可 以直接将该变量捕获到。
实际在底层编译器对于lambda表达式的处理方式,完全就是按照函数对象的方式处理的,即:如 果定义了一个lambda表达式,编译器会自动生成一个类,在该类中重载了operator()。
所以在本质上lambda匿名函数就是一个仿函数。
6.function/bind (项目用的比较多,但是考的少)
function包装器
function包装器 也叫作适配器。C++中的function本质是一个类模板,也是一个包装器。
那么我们来看看,我们为什么需要function呢?
ret = func(x);
// 上面func可能是什么呢?那么func可能是函数名?函数指针?函数对象(仿函数对象)?也有可能是lamber表达式对象?所以这些都是可调用的类型!如此丰富的类型,可能会导致模板的效率低下!为什么呢?我们继续往下看
template<class F, class T>
T useF(F f, T x)
{
static int count = 0;
cout << "count:" << ++count << endl;
cout << "count:" << &count << endl;
return f(x);
}
double f(double i)
{
return i / 2;
}
struct Functor
{
double operator()(double d)
{
return d / 3;
}
};
int main()
{
// 函数名
cout << useF(f, 11.11) << endl;
// 函数对象
cout << useF(Functor(), 11.11) << endl;
// lamber表达式
cout << useF([](double d)->double { return d / 4; }, 11.11) << endl;
return 0;
}
通过上面的程序验证,我们会发现useF函数模板实例化了三份。
包装器可以很好的解决上面的问题
std::function在头文件<functional>
// 类模板原型如下
template <class T> function; // undefined
template <class Ret, class... Args>
class function<Ret(Args...)>;
模板参数说明:
Ret : 被调用函数的返回类型
Args…:被调用函数的形参
// 使用方法如下:
#include <functional>
int f(int a, int b)
{
return a + b;
}
struct Functor
{
public:
int operator() (int a, int b)
{
return a + b;
}
};
class Plus
{
public:
static int plusi(int a, int b)
{
return a + b;
}
double plusd(double a, double b)
{
return a + b;
}
};
int main()
{
// 函数名(函数指针)
std::function<int(int, int)> func1 = f;
cout << func1(1, 2) << endl;
// 函数对象
std::function<int(int, int)> func2 = Functor();
cout << func2(1, 2) << endl;
// lamber表达式
std::function<int(int, int)> func3 = [](const int a, const int b)
{return a + b; };
cout << func3(1, 2) << endl;
// 类的成员函数
std::function<int(int, int)> func4 = &Plus::plusi;
cout << func4(1, 2) << endl;
std::function<double(Plus, double, double)> func5 = &Plus::plusd;
cout << func5(Plus(), 1.1, 2.2) << endl;
return 0;
}
有了包装器,如何解决模板的效率低下,实例化多份的问题呢?
#include <functional>
template<class F, class T>
T useF(F f, T x)
{
static int count = 0;
cout << "count:" << ++count << endl;
cout << "count:" << &count << endl;
return f(x);
}
double f(double i)
{
return i / 2;
}
struct Functor
{
double operator()(double d)
{
return d / 3;
}
};
int main()
{
// 函数名
std::function<double(double)> func1 = f;
cout << useF(func1, 11.11) << endl;
// 函数对象
std::function<double(double)> func2 = Functor();
cout << useF(func2, 11.11) << endl;
// lamber表达式
std::function<double(double)> func3 = [](double d)->double { return d /
4; };
cout << useF(func3, 11.11) << endl;
return 0;
}
**bind **
std::bind函数定义在头文件中,是一个函数模板,它就像一个函数包装器(适配器),接受一个可 调用对象(callable object),生成一个新的可调用对象来“适应”原对象的参数列表。一般而 言,我们用它可以把一个原本接收N个参数的函数fn,通过绑定一些参数,返回一个接收M个(M 可以大于N,但这么做没什么意义)参数的新函数。同时,使用std::bind函数还可以实现参数顺 序调整等操作。
可以将bind函数看作是一个通用的函数适配器,它接受一个可调用对象,生成一个新的可调用对
象来“适应”原对象的参数列表。
调用bind的一般形式:auto newCallable = bind(callable, arg_list);
其中,newCallable本身是一个可调用对象,arg_list是一个逗号分隔的参数列表,对应给定的
callable的参数。当我们调用newCallable时,newCallable会调用callable, 并传给它arg_list中
的参数。
arg_list中的参数可能包含形如_n的名字,其中n是一个整数,这些参数是“占位符”,表示
newCallable的参数,它们占据了传递给newCallable的参数的“位置”。数值n表示生成的可调用对
象中参数的位置:_1为newCallable的第一个参数,_2为第二个参数,以此类推
// 使用举例
#include <functional>
int Plus(int a, int b)
{
return a + b;
}
class Sub
{
public:
int sub(int a, int b)
{
return a - b;
}
};
int main()
{
//表示绑定函数plus 参数分别由调用 func1 的第一,二个参数指定
std::function<int(int, int)> func1 = std::bind(Plus, placeholders::_1,
placeholders::_2);
//auto func1 = std::bind(Plus, placeholders::_1, placeholders::_2);
//func2的类型为 function<void(int, int, int)> 与func1类型一样
//表示绑定函数 plus 的第一,二为: 1, 2
auto func2 = std::bind(Plus, 1, 2);
cout << func1(1, 2) << endl;
cout << func2() << endl;
Sub s;
// 绑定成员函数
std::function<int(int, int)> func3 = std::bind(&Sub::sub, s,
placeholders::_1, placeholders::_2);
// 参数调换顺序
std::function<int(int, int)> func4 = std::bind(&Sub::sub, s,
placeholders::_2, placeholders::_1);
cout << func3(1, 2) << endl;
cout << func4(1, 2) << endl;
return 0;
}
7.多线程
线程库
在C++11之前,涉及到多线程问题,都是和平台相关的,比如windows和linux下各有自己的接 口,这使得代码的可移植性比较差。C++11中最重要的特性就是对线程进行支持了,使得C++在 并行编程时不需要依赖第三方库,而且在原子操作中还引入了原子类的概念。要使用标准库中的 线程,必须包含< thread >头文件。
函数名 | 功能 |
---|---|
thread() | 构造一个线程对象,没有关联任何线程函数,即没有启动任何线程 |
thread(fn, args1, args2, …) | 构造一个线程对象,并关联线程函数fn,args1,args2,…为线程函数的 参数 |
get_id() | 获取线程id |
jionable() | 线程是否还在执行,joinable代表的是一个正在执行中的线程。 |
jion() | 该函数调用后会阻塞住线程,当该线程结束后,主线程继续执行 |
detach() | 在创建线程对象后马上调用,用于把被创建线程与线程对象分离开,分离 的线程变为后台线程,创建的线程的"死活"就与主线程无关 |
注意
- 线程是操作系统中的一个概念,线程对象可以关联一个线程,用来控制线程以及获取线程的 状态。
- 当创建一个线程对象后,没有提供线程函数,该对象实际没有对应任何线程。
#include <thread>
int main()
{
std::thread t1;
cout << t1.get_id() << endl;
return 0;
}
get_id()的返回值类型为id类型,id类型实际为std::thread命名空间下封装的一个类,该类中 包含了一个结构体:
// vs下查看
typedef struct
{ /* thread identifier for Win32 */
void *_Hnd; /* Win32 HANDLE */
unsigned int _Id;
} _Thrd_imp_t;
- 当创建一个线程对象后,并且给线程关联线程函数,该线程就被启动,与主线程一起运行。 线程函数一般情况下可按照以下三种方式提供:
- 函数指针
- lambda表达式
- 函数对象
#include <iostream>
using namespace std;
#include <thread>
void ThreadFunc(int a)
{
cout << "Thread1" << a << endl;
}
class TF
{
public:
void operator()()
{
cout << "Thread3" << endl;
}
};
int main()
{
// 线程函数为函数指针
thread t1(ThreadFunc, 10);
// 线程函数为lambda表达式
thread t2([] {cout << "Thread2" << endl; });
// 线程函数为函数对象
TF tf;
thread t3(tf);
t1.join();
t2.join();
t3.join();
cout << "Main thread!" << endl;
return 0;
}
- thread类是防拷贝的,不允许拷贝构造以及赋值,但是可以移动构造和移动赋值,即将一个 线程对象关联线程的状态转移给其他线程对象,转移期间不意向线程的执行。
- 可以通过jionable()函数判断线程是否是有效的,如果是以下任意情况,则线程无效
- 采用无参构造函数构造的线程对象
- 线程对象的状态已经转移给其他线程对象
- 线程已经调用jion或者detach结束
面试题:并发与并行的区别?
线程函数参数
线程函数的参数是以值拷贝的方式拷贝到线程栈空间中的,因此:即使线程参数为引用类型,在线程中修改后也不能修改外部实参,因为其实际引用的是线程栈中的拷贝,而不是外部实参。
#include <thread>
#include <iostream>
using namespace std;
void ThreadFunc1(int& x)
{
x += 10;
}
void ThreadFunc2(int* x)
{
*x += 10;
}
int main()
{
int a = 10;
// 在线程函数中对a修改,不会影响外部实参,因为:线程函数参数虽然是引用方式,但其实际引用的是线程栈中的拷贝
//thread t1(ThreadFunc1, a); //这一行会报错
//t1.join();
cout << a << endl;
// 如果想要通过形参改变外部实参时,必须借助std::ref()函数
thread t2(ThreadFunc1, std::ref(a));
t2.join();
cout << a << endl;
// 地址的拷贝
thread t3(ThreadFunc2, &a);
t3.join();
cout << a << endl;
return 0;
}
注意:如果是类成员函数作为线程参数时,必须将this作为线程函数参数。
原子性操作库(atomic)
多线程最主要的问题是共享数据带来的问题(即线程安全)。如果共享数据都是只读的,那么没问 题,因为只读操作不会影响到数据,更不会涉及对数据的修改,所以所有线程都会获得同样的数 据。但是,当一个或多个线程要修改共享数据时,就会产生很多潜在的麻烦。比如:
#include <iostream>
using namespace std;
#include <thread>
unsigned long sum = 0L;
void fun(size_t num)
{
for (size_t i = 0; i < num; ++i)
sum++;
}
int main()
{
cout << "Before joining,sum = " << sum << std::endl;
thread t1(fun, 10000000);
thread t2(fun, 10000000);
t1.join();
t2.join();
cout << "After joining,sum = " << sum << std::endl;
return 0;
}
C++98中传统的解决方式:可以对共享修改的数据可以加锁保护
#include <iostream>
using namespace std;
#include <thread>
#include <mutex>
std::mutex m;
unsigned long sum = 0L;
void fun(size_t num)
{
m.lock();
for (size_t i = 0; i < num; ++i)
{
sum++;
}
m.unlock();
//或者写成这样
//for (size_t i = 0; i < num; ++i)
//{
// m.lock();
// sum++;
// m.unlock();
//}
}
int main()
{
cout << "Before joining,sum = " << sum << std::endl;
thread t1(fun, 10000000);
thread t2(fun, 10000000);
t1.join();
t2.join();
cout << "After joining,sum = " << sum << std::endl;
return 0;
}
虽然加锁可以解决,但是加锁有一个缺陷就是:只要一个线程在对sum++时,其他线程就会被阻 塞,会影响程序运行的效率,而且锁如果控制不好,还容易造成死锁。
因此C++11中引入了原子操作。所谓原子操作:即不可被中断的一个或一系列操作,C++11引入 的原子操作类型,使得线程间数据的同步变得非常高效。
注意:需要使用以上原子操作变量时,必须添加头文件
#include <iostream>
using namespace std;
#include <thread>
#include <atomic>
atomic_long sum{ 0 };
void fun(size_t num)
{
for (size_t i = 0; i < num; ++i)
sum++; // 原子操作
}
int main()
{
cout << "Before joining, sum = " << sum << std::endl;
thread t1(fun, 1000000);
thread t2(fun, 1000000);
t1.join();
t2.join();
cout << "After joining, sum = " << sum << std::endl;
return 0;
}
在C++11中,程序员不需要对原子类型变量进行加锁解锁操作,线程能够对原子类型变量互斥的 访问。
更为普遍的,程序员可以使用atomic类模板,定义出需要的任意原子类型。
atmoic<T> t; // 声明一个类型为T的原子类型变量t
注意:原子类型通常属于"资源型"数据,多个线程只能访问单个原子类型的拷贝,因此在C++11 中,原子类型只能从其模板参数中进行构造,不允许原子类型进行拷贝构造、移动构造以及 operator=等,为了防止意外,标准库已经将atmoic模板类中的拷贝构造、移动构造、赋值运算 符重载默认删除掉了(=delete)。
#include <atomic>
int main()
{
atomic<int> a1(0);
//atomic<int> a2(a1); // 编译失败
atomic<int> a2(0);
//a2 = a1; // 编译失败
return 0;
}
在多线程环境下,如果想要保证某个变量的安全性,只要将其设置成对应的原子类型即可,即高 效又不容易出现死锁问题。但是有些情况下,我们可能需要保证一段代码的安全性,那么就只能 通过锁的方式来进行控制。
比如:一个线程对变量number进行加一100次,另外一个减一100次,每次操作加一或者减一之 后,输出number的结果,要求:number最后的值为1.
上述代码的缺陷:锁控制不好时,可能会造成死锁,最常见的比如在锁中间代码返回,或者在锁的范围内抛异常。因此:C++11采用RAII的方式对锁进行了封装,即lock_guard和unique_lock。
在C++11中,Mutex总共包了四个互斥量的种类:
std::mutex
C++11提供的最基本的互斥量,该类的对象之间不能拷贝,也不能进行移动。mutex最常用 的三个函数:
函数名 功能作用 lock() 上锁:锁住互斥量 unlock() 解锁:释放对互斥量的所有权 try_lock() 尝试锁住互斥量,如果互斥量被其他线程占有,则当前线程也不会被阻 塞 注意,线程函数调用lock()时,可能会发生以下三种情况:
- 如果该互斥量当前没有被锁住,则调用线程将该互斥量锁住,直到调用 unlock之前, 该线程一直拥有该锁
- 如果当前互斥量被其他线程锁住,则当前的调用线程被阻塞住 如果当前互斥量被当前调用线程锁住,则会产生死锁(deadlock) 线程函数调用try_lock()时,可能会发生以下三种情况:
- 如果当前互斥量没有被其他线程占有,则该线程锁住互斥量,直到该线程调用 unlock 释放互斥量
- 如果当前互斥量被其他线程锁住,则当前调用线程返回 false,而并不会被阻塞掉
- 如果当前互斥量被当前调用线程锁住,则会产生死锁(deadlock)
std::recursive_mutex
其允许同一个线程对互斥量多次上锁(即递归上锁),来获得对互斥量对象的多层所有权, 释放互斥量时需要调用与该锁层次深度相同次数的 unlock(),除此之外, std::recursive_mutex 的特性和 std::mutex 大致相同。
std::timed_mutex
比 std::mutex 多了两个成员函数,try_lock_for(),try_lock_until() 。
- try_lock_for()
接受一个时间范围,表示在这一段时间范围之内线程如果没有获得锁则被阻塞住(与 std::mutex 的 try_lock() 不同,try_lock 如果被调用时没有获得锁则直接返回 false),如果在此期间其他线程释放了锁,则该线程可以获得对互斥量的锁,如果超 时(即在指定时间内还是没有获得锁),则返回 false。
- try_lock_until()
接受一个时间点作为参数,在指定时间点未到来之前线程如果没有获得锁则被阻塞住, 如果在此期间其他线程释放了锁,则该线程可以获得对互斥量的锁,如果超时(即在指 定时间内还是没有获得锁),则返回 false。
std::recursive_timed_mutex
lock_guard
std::lock_gurad 是 C++11 中定义的模板类。定义如下:
template<class _Mutex>
class lock_guard
{
public:
// 在构造lock_gard时,_Mtx还没有被上锁
explicit lock_guard(_Mutex& _Mtx)
: _MyMutex(_Mtx)
{
_MyMutex.lock();
}
// 在构造lock_gard时,_Mtx已经被上锁,此处不需要再上锁
lock_guard(_Mutex& _Mtx, adopt_lock_t)
: _MyMutex(_Mtx)
{}
~lock_guard() _NOEXCEPT
{
_MyMutex.unlock();
}
lock_guard(const lock_guard&) = delete;
lock_guard& operator=(const lock_guard&) = delete;
private:
_Mutex& _MyMutex;
};
通过上述代码可以看到,lock_guard类模板主要是通过RAII的方式,对其管理的互斥量进行了封 装,在需要加锁的地方,只需要用上述介绍的任意互斥体实例化一个lock_guard,调用构造函数 成功上锁,出作用域前,lock_guard对象要被销毁,调用析构函数自动解锁,可以有效避免死锁 问题。
lock_guard的缺陷:太单一,用户没有办法对该锁进行控制,因此C++11又提供了 unique_lock。
unique_lock
与lock_gard类似,unique_lock类模板也是采用RAII的方式对锁进行了封装,并且也是以独占所 有权的方式管理mutex对象的上锁和解锁操作,即其对象之间不能发生拷贝。在构造(或移动 (move)赋值)时,unique_lock 对象需要传递一个 Mutex 对象作为它的参数,新创建的 unique_lock 对象负责传入的 Mutex 对象的上锁和解锁操作。使用以上类型互斥量实例化 unique_lock的对象时,自动调用构造函数上锁,unique_lock对象销毁时自动调用析构函数解 锁,可以很方便的防止死锁问题。
与lock_guard不同的是,unique_lock更加的灵活,提供了更多的成员函数:
- 上锁/解锁操作:lock、try_lock、try_lock_for、try_lock_until和unlock
- 修改操作:移动赋值、交换(swap:与另一个unique_lock对象互换所管理的互斥量所有 权)、释放(release:返回它所管理的互斥量对象的指针,并释放所有权)
- 获取属性:owns_lock(返回当前对象是否上了锁)、operator bool()(与owns_lock()的功能相 同)、mutex(返回当前unique_lock所管理的互斥量的指针)。
问
支持两个线程交替打印,一个打印奇数,一个打印偶数(这里会用到条件变量 )
#include <thread>
#include <mutex>
#include <condition_variable>
#include <iostream>
using namespace std;
void two_thread_print()
{
std::mutex mtx;
condition_variable c;
int n = 100;
bool flag = true;
thread t1([&]() {
int i = 0;
while (i < n)
{
unique_lock<mutex> lock(mtx);
c.wait(lock, [&]()->bool {return flag; });
cout << i << endl;
flag = false;
i += 2; // 偶数
c.notify_one();
}
});
thread t2([&]() {
int j = 1;
while (j < n)
{
unique_lock<mutex> lock(mtx);
c.wait(lock, [&]()->bool {return !flag; });
cout << j << endl;
j += 2; // 奇数
flag = true;
c.notify_one();
}
});
t1.join();
t2.join();
}
int main()
{
two_thread_print();
return 0;
}