数学分析原理答案——第五章 习题15

发布于:2024-10-08 ⋅ 阅读:(8) ⋅ 点赞:(0)

【第五章 习题15】

a ∈ R 1 a \in R^{1} aR1 f f f ( a , + ∞ ) (a, + \infty) (a,+)上的二次可微实函数, M 0 , M 1 , M 2 M_{0},M_{1},M_{2} M0,M1,M2分别是 ∣ f ( x ) ∣ , ∣ f ′ ( x ) ∣ , ∣ f ′ ′ ( x ) ∣ \left| f(x) \right|,\left| f^{'}(x) \right|,\left| f^{''}(x) \right| f(x), f(x) , f′′(x) ( a , + ∞ ) (a, + \infty) (a,+)上的最小上界。试证

M 1 2 ≤ 4 M 0 M 2 M_{1}^{2} \leq 4M_{0}M_{2} M124M0M2

【证明】

  1. 根据泰勒定理,可知存在某个 ξ ∈ ( x , x + 2 h ) \xi \in (x,x + 2h) ξ(x,x+2h),使得

f ′ ( x ) = 1 2 h [ f ( x + 2 h ) − f ( x ) ] − h f ′ ′ ( ξ ) f^{'}(x) = \frac{1}{2h}\left\lbrack f(x + 2h) - f(x) \right\rbrack - hf^{''}(\xi) f(x)=2h1[f(x+2h)f(x)]hf′′(ξ)

所以

∣ f ′ ( x ) ∣ ≤ ∣ 1 2 h [ f ( x + 2 h ) − f ( x ) ] ∣ + ∣ h f ′ ′ ( ξ ) ∣ \left| f^{'}(x) \right| \leq \left| \frac{1}{2h}\left\lbrack f(x + 2h) - f(x) \right\rbrack \right| + \left| hf^{''}(\xi) \right| f(x) 2h1[f(x+2h)f(x)] + hf′′(ξ)

≤ 1 2 h ( ∣ f ( x + 2 h ) ∣ + ∣ f ( x ) ∣ ) + h ∣ f ′ ′ ( ξ ) ∣ \leq \frac{1}{2h}\left( \left| f(x + 2h) \right| + \left| f(x) \right| \right) + h\left| f^{''}(\xi) \right| 2h1(f(x+2h)+f(x))+h f′′(ξ)

根据 M 0 , M 1 , M 2 M_{0},M_{1},M_{2} M0,M1,M2的定义,可知

∣ f ′ ( x ) ∣ ≤ 1 2 h ( M 0 + M 0 ) + h M 2 = h M 2 + M 0 h \left| f^{'}(x) \right| \leq \frac{1}{2h}\left( M_{0} + M_{0} \right) + hM_{2} = hM_{2} + \frac{M_{0}}{h} f(x) 2h1(M0+M0)+hM2=hM2+hM0

由于 h h h是一个自由的变量,不受 M 0 , M 1 , M 2 M_{0},M_{1},M_{2} M0,M1,M2影响,所以当

h = M 0 M 2 h = \sqrt{\frac{M_{0}}{M_{2}}} h=M2M0

∣ f ′ ( x ) ∣ ≤ 2 M 0 M 2 \left| f^{'}(x) \right| \leq 2\sqrt{M_{0}M_{2}} f(x) 2M0M2

所以

M 1 2 ≤ 4 M 0 M 2 M_{1}^{2} \leq 4M_{0}M_{2} M124M0M2

  1. 根据 f ( x ) f(x) f(x)的定义,可以知道

f ( x ) = { 2 x 2 − 1 − 1 < x < 0 1 − 2 x 2 + 1 0 ≤ x < + ∞   f(x) = \left\{ \begin{matrix} 2x^{2} - 1 & - 1 < x < 0 \\ 1 - \frac{2}{x^{2} + 1} & 0 \leq x < + \infty \end{matrix} \right.\ f(x)={2x211x2+121<x<00x<+ 

f ′ ( x ) = { 4 x − 1 < x < 0 4 x ( x 2 + 1 ) 2 0 ≤ x < + ∞   f^{'}(x) = \left\{ \begin{matrix} 4x & - 1 < x < 0 \\ \frac{4x}{\left( x^{2} + 1 \right)^{2}} & 0 \leq x < + \infty \end{matrix} \right.\ f(x)={4x(x2+1)24x1<x<00x<+ 

f ′ ′ ( x ) = { 4 − 1 < x < 0 4 − 12 x 2 ( x 2 + 1 ) 3 0 ≤ x < + ∞   f^{''}(x) = \left\{ \begin{matrix} 4 & - 1 < x < 0 \\ \frac{4 - 12x^{2}}{\left( x^{2} + 1 \right)^{3}} & 0 \leq x < + \infty \end{matrix} \right.\ f′′(x)={4(x2+1)3412x21<x<00x<+ 

可以验证 M 0 = 1 , M 1 = 4 , M 2 = 4 M_{0} = 1,M_{1} = 4,M_{2} = 4 M0=1,M1=4,M2=4,于是

M 1 2 = 4 M 0 M 2 M_{1}^{2} = 4M_{0}M_{2} M12=4M0M2

  1. 对于向量值函数, M 1 2 ≤ 4 M 0 M 2 M_{1}^{2} \leq 4M_{0}M_{2} M124M0M2仍然成立

f ( x ) = ( f 1 ( x ) , f 2 ( x ) … f n ( x ) ) \mathbf{f}(x) = \left( f_{1}(x),f_{2}(x)\ldots f_{n}(x) \right) f(x)=(f1(x),f2(x)fn(x))

任取一点 x 0 x_{0} x0,设

F ( x ) = f ′ ( x 0 ) ⋅ f ( x ) F(x) = \mathbf{f}^{\mathbf{'}}\left( x_{0} \right) \cdot \mathbf{f}(x) F(x)=f(x0)f(x)

此时,设

M 0 = sup ⁡ ∣ f ( x ) ∣ M_{0} = \sup{|\mathbf{f}(x)|} M0=supf(x)

M 1 = sup ⁡ ∣ f ′ ( x ) ∣ M_{1} = \sup{|\mathbf{f}^{'}(x)|} M1=supf(x)

M 2 = sup ⁡ ∣ f ′ ′ ( x ) ∣ M_{2} = \sup{|\mathbf{f}^{''}(x)|} M2=supf′′(x)

所以

F ′ ( x ) = f ′ ( x 0 ) ⋅ f ′ ( x ) F^{'}(x) = \mathbf{f}^{\mathbf{'}}\left( x_{0} \right) \cdot \mathbf{f}^{\mathbf{'}}(x) F(x)=f(x0)f(x)

F ′ ′ ( x ) = f ′ ( x 0 ) ⋅ f ′ ′ ( x ) F^{''}(x) = \mathbf{f}^{\mathbf{'}}\left( x_{0} \right) \cdot \mathbf{f}^{\mathbf{'}\mathbf{'}}(x) F′′(x)=f(x0)f(x)

根据柯西施瓦茨不等式

sup ⁡ ∣ F ( x ) ∣ ≤ M 0 × ∣ f ′ ( x 0 ) ∣ \sup{|F(x)|} \leq M_{0} \times \left| \mathbf{f}^{\mathbf{'}}\left( x_{0} \right) \right| supF(x)M0× f(x0)

sup ⁡ ∣ F ′ ′ ( x ) ∣ ≤ M 2 × ∣ f ′ ( x 0 ) ∣ \sup{|F^{''}(x)|} \leq M_{2} \times \left| \mathbf{f}^{\mathbf{'}}\left( x_{0} \right) \right| supF′′(x)M2× f(x0)

由于 F ( x ) F(x) F(x)为实函数,根据泰勒定理,可知存在某个 ξ ∈ ( x 0 , x 0 + 2 h ) \xi \in \left( x_{0},x_{0} + 2h \right) ξ(x0,x0+2h),使得

F ′ ( x 0 ) = 1 2 h [ F ( x 0 + 2 h ) − F ( x 0 ) ] − h F ′ ′ ( ξ ) F^{'}\left( x_{0} \right) = \frac{1}{2h}\left\lbrack F\left( x_{0} + 2h \right) - F\left( x_{0} \right) \right\rbrack - hF^{''}(\xi) F(x0)=2h1[F(x0+2h)F(x0)]hF′′(ξ)

根据前面的结论

∣ F ′ ( x 0 ) ∣ ≤ 2 × sup ⁡ ∣ F ( x ) ∣ × sup ⁡ ∣ F ′ ′ ( x ) ∣ \left| F^{'}\left( x_{0} \right) \right| \leq 2 \times \sqrt{\sup\left| F(x) \right| \times \sup\left| F^{''}(x) \right|} F(x0) 2×supF(x)×supF′′(x)

从而

∣ f ′ ( x 0 ) ⋅ f ′ ( x 0 ) ∣ ≤ 2 × M 0 M 2 × ∣ f ′ ( x 0 ) ∣ \left| \mathbf{f}^{\mathbf{'}}\left( x_{0} \right) \cdot \mathbf{f}^{\mathbf{'}}\left( x_{0} \right) \right| \leq 2 \times \sqrt{M_{0}M_{2}} \times \left| \mathbf{f}^{\mathbf{'}}\left( x_{0} \right) \right| f(x0)f(x0) 2×M0M2 × f(x0)

∣ f ′ ( x 0 ) ∣ ≤ 2 M 0 M 2 \left| \mathbf{f}^{\mathbf{'}}\left( x_{0} \right) \right| \leq 2\sqrt{M_{0}M_{2}} f(x0) 2M0M2

由于 x 0 x_{0} x0是任意的,所以

M 1 ≤ 2 M 0 M 2 M_{1} \leq 2\sqrt{M_{0}M_{2}} M12M0M2

M 1 2 ≤ 4 M 0 M 2 M_{1}^{2} \leq 4M_{0}M_{2} M124M0M2

  1. 当向量值函数的所有分量为上边的例子函数的常数倍时,

M 1 2 = 4 M 0 M 2 M_{1}^{2} = 4M_{0}M_{2} M12=4M0M2
可以成立