3. 函数极限与连续函数
3.4 闭区间上的连续函数
3.4.5 一致性连续
【例】证明: f ( x ) = 1 x , X = ( 0 , 1 ) f(x)=\frac{1}{x},\textbf{X}=(0,1) f(x)=x1,X=(0,1)非一致连续。
【证】取 x n ′ = 1 n , x n ′ ′ = 1 2 n x_{n}'=\frac{1}{n},x_{n}''=\frac{1}{2n} xn′=n1,xn′′=2n1
x n ′ − x n ′ ′ = 1 2 n → 0 ( n → ∞ ) x_{n}'-x_{n}''=\frac{1}{2n}\to 0(n\to \infty) xn′−xn′′=2n1→0(n→∞)
f ( x n ′ ) − f ( x n ′ ′ ) = n − 2 n = − n ↛ 0 ( n → ∞ ) f(x_{n}')-f(x_{n}'')=n-2n=-n\not\to 0(n\to \infty) f(xn′)−f(xn′′)=n−2n=−n→0(n→∞)
所以 f ( x ) = 1 x , x ∈ ( 0 , 1 ) f(x)=\frac{1}{x},x\in(0,1) f(x)=x1,x∈(0,1)非一致连续。
【例】证明: f ( x ) = 1 x , X = [ η , 1 ) , 0 < η < 1 f(x)=\frac{1}{x},\textbf{X}=[\eta,1),0<\eta<1 f(x)=x1,X=[η,1),0<η<1一致连续。
【证】 ∀ ε > 0 , ∣ 1 x ′ − 1 x ′ ′ ∣ = ∣ x ′ − x ′ ′ ∣ ∣ x ′ x ′ ′ ∣ ≤ ∣ x ′ − x ′ ′ ∣ ∣ η ⋅ η ∣ = ∣ x ′ − x ′ ′ ∣ η 2 \forall \varepsilon>0,|\frac{1}{x'}-\frac{1}{x''}|=\frac{|x'-x''|}{|x'x''|}\le \frac{|x'-x''|}{|\eta\cdot\eta|}=\frac{|x'-x''|}{\eta^{2}} ∀ε>0,∣x′1−x′′1∣=∣x′x′′∣∣x′−x′′∣≤∣η⋅η∣∣x′−x′′∣=η2∣x′−x′′∣
取 δ = η 2 ε > 0 , ∀ x ′ , x ′ ′ ∈ [ η , 1 ) , ∣ x ′ − x ′ ′ ∣ < δ : ∣ 1 x ′ − 1 x ′ ′ ∣ = ∣ x ′ − x ′ ′ ∣ ∣ x ′ x ′ ′ ∣ ≤ ∣ x ′ − x ′ ′ ∣ ∣ η ⋅ η ∣ = ∣ x ′ − x ′ ′ ∣ η 2 < δ η 2 = η 2 ε η 2 = ε \delta = \eta^{2}\varepsilon>0,\forall x',x''\in[\eta,1),|x'-x''|<\delta:|\frac{1}{x'}-\frac{1}{x''}|=\frac{|x'-x''|}{|x'x''|}\le \frac{|x'-x''|}{|\eta\cdot\eta|}=\frac{|x'-x''|}{\eta^{2}}<\frac{\delta}{\eta^{2}}=\frac{\eta^{2}\varepsilon}{\eta^{2}}=\varepsilon δ=η2ε>0,∀x′,x′′∈[η,1),∣x′−x′′∣<δ:∣x′1−x′′1∣=∣x′x′′∣∣x′−x′′∣≤∣η⋅η∣∣x′−x′′∣=η2∣x′−x′′∣<η2δ=η2η2ε=ε
则 f ( x ) = 1 x , X = [ η , 1 ) , 0 < η < 1 f(x)=\frac{1}{x},\textbf{X}=[\eta,1),0<\eta<1 f(x)=x1,X=[η,1),0<η<1一致连续。
【例3.4.5】证明: f ( x ) = x 2 , X = [ 0 , + ∞ ) f(x)=x^{2},\textbf{X}=[0,+\infty) f(x)=x2,X=[0,+∞)非一致连续,但是在 [ 0 , A ] [0,A] [0,A]( A A A任意大于0,但是不能趋于无穷大)上一致连续。
【证】取 x n ′ = n + 1 , x n ′ ′ = n x_{n}'=\sqrt{n+1},x_{n}''=\sqrt{n} xn′=n+1,xn′′=n(两个点都在区间内部)
n + 1 − n → 0 ( n → ∞ ) \sqrt{n+1}-\sqrt{n}\to 0(n\to \infty) n+1−n→0(n→∞)(之前证过,可以乘共轭根式,然后分子分母有理化,提出公因式)
但 f ( x n ′ ) − f ( x n ′ ′ ) = n + 1 − n = 1 ↛ 0 ( n → ∞ ) f(x_{n}')-f(x_{n}'')=n+1-n=1\not\to 0(n\to\infty) f(xn′)−f(xn′′)=n+1−n=1→0(n→∞)
所以 f ( x ) = x 2 , X = [ 0 , + ∞ ) f(x)=x^{2},\textbf{X}=[0,+\infty) f(x)=x2,X=[0,+∞)非一致连续。
∀ ε > 0 , ∣ ( x ′ ) 2 − ( x ′ ′ ) 2 ∣ = ∣ x ′ + x ′ ′ ∣ ⋅ ∣ x ′ − x ′ ′ ∣ ≤ 2 A ∣ x ′ − x ′ ′ ∣ \forall \varepsilon>0,|(x')^{2}-(x'')^{2}|=|x'+x''|\cdot|x'-x''|\le 2A|x'-x''| ∀ε>0,∣(x′)2−(x′′)2∣=∣x′+x′′∣⋅∣x′−x′′∣≤2A∣x′−x′′∣
取 δ = ε 2 A > 0 , ∀ x ′ , x ′ ′ ∈ [ 0 , A ] , ∣ x ′ − x ′ ′ ∣ < δ : ∣ ( x ′ ) 2 − ( x ′ ′ ) 2 ∣ = ∣ x ′ + x ′ ′ ∣ ⋅ ∣ x ′ − x ′ ′ ∣ ≤ 2 A ∣ x ′ − x ′ ′ ∣ < 2 A ⋅ ε 2 A = ε \delta = \frac{\varepsilon}{2A}>0,\forall x',x''\in[0,A],|x'-x''|<\delta:|(x')^{2}-(x'')^{2}|=|x'+x''|\cdot|x'-x''|\le 2A|x'-x''|<2A\cdot\frac{\varepsilon}{2A}=\varepsilon δ=2Aε>0,∀x′,x′′∈[0,A],∣x′−x′′∣<δ:∣(x′)2−(x′′)2∣=∣x′+x′′∣⋅∣x′−x′′∣≤2A∣x′−x′′∣<2A⋅2Aε=ε
所以 f ( x ) = x 2 f(x)=x^{2} f(x)=x2在 [ 0 , A ] [0,A] [0,A]上一致连续。
3.4.6 Cantor(康托)定理
【定理3.4.6】【Cantor(康托)定理】若 f ( x ) f(x) f(x)在闭区间 [ a , b ] [a,b] [a,b]连续,则 f ( x ) f(x) f(x)在 [ a , b ] [a,b] [a,b]上一致连续。
【证】用反证法,假设 f ( x ) f(x) f(x)在闭区间 [ a , b ] [a,b] [a,b]连续,但 f ( x ) f(x) f(x)在 [ a , b ] [a,b] [a,b]上非一致连续。
则 ∃ x n ′ , x n ′ ′ ∈ [ a , b ] , ∣ x n ′ − x n ′ ′ ∣ < 1 n \exists x_{n}',x_{n}''\in[a,b],|x_{n}'-x_{n}''|<\frac{1}{n} ∃xn′,xn′′∈[a,b],∣xn′−xn′′∣<n1,但 ∣ f ( x n ′ ) − f ( x n ′ ′ ) ∣ ≥ ε 0 > 0 |f(x_{n}')-f(x_{n}'')|\ge \varepsilon_{0}>0 ∣f(xn′)−f(xn′′)∣≥ε0>0
{ x n ′ } \{x_{n}'\} {xn′}是有界数列,由维尔斯特拉斯定理, { x n ′ } \{x_{n}'\} {xn′}必有收敛值,设 lim k → ∞ x n k ′ = ξ ∈ [ a , b ] \lim\limits _{k\to\infty}x_{n_{k}}'=\xi\in[a,b] k→∞limxnk′=ξ∈[a,b]
有 ∣ x n k ′ − x n k ′ ′ ∣ < 1 n k ⇒ lim k → ∞ x n k ′ ′ = ξ |x_{n_{k}}'-x_{n_{k}}''|<\frac{1}{n_{k}}\Rightarrow\lim\limits _{k\to\infty}x_{n_{k}}''=\xi ∣xnk′−xnk′′∣<nk1⇒k→∞limxnk′′=ξ
由 f ( x ) f(x) f(x)在 ξ \xi ξ点的连续性, lim k → ∞ f ( x n k ′ ) = lim k → ∞ f ( x n k ′ ′ ) = f ( ξ ) ⇒ ( f ( x n k ′ ) − f ( x n k ′ ′ ) ) → 0 , ( k → ∞ ) \lim\limits _{k\to\infty}f(x_{n_{k}}')=\lim\limits _{k\to\infty}f(x_{n_{k}}'')=f(\xi)\Rightarrow(f(x_{n_{k}}')-f(x_{n_{k}}''))\to0,(k\to \infty) k→∞limf(xnk′)=k→∞limf(xnk′′)=f(ξ)⇒(f(xnk′)−f(xnk′′))→0,(k→∞)与 ∣ f ( x n ′ ) − f ( x n ′ ′ ) ∣ ≥ ε 0 > 0 |f(x_{n}')-f(x_{n}'')|\ge \varepsilon_{0}>0 ∣f(xn′)−f(xn′′)∣≥ε0>0矛盾
定理得证。
【定理3.4.7】 f ( x ) f(x) f(x)在有限开区间 ( a , b ) (a,b) (a,b)连续,则 f ( x ) f(x) f(x)在开区间 ( a , b ) (a,b) (a,b)上一致连续的充分必要条件是 f ( a + ) , f ( b − ) f(a+),f(b-) f(a+),f(b−)存在。
【证】先证充分性,设 f ( a + ) = A , f ( b − ) = B f(a+)=A,f(b-)=B f(a+)=A,f(b−)=B,定义 f ~ ( x ) = { A , x = a , f ( x ) , a < x < b , B , x = b , \tilde{f}(x)=\left\{\begin{array}{ll} A, & x=a, \\ f(x), & a<x<b, \\ B, & x=b, \end{array}\right. f~(x)=⎩
⎨
⎧A,f(x),B,x=a,a<x<b,x=b,
f ~ ( x ) \tilde{f}(x) f~(x)在 [ a , b ] [a,b] [a,b]上连续,由康托定理, f ~ ( x ) \tilde{f}(x) f~(x)在 [ a , b ] [a,b] [a,b]上一致连续,所以 f ~ ( x ) \tilde{f}(x) f~(x)在 ( a , b ) (a,b) (a,b)也一致连续,当 x ∈ ( a , b ) : f ~ ( x ) = f ( x ) x\in(a,b):\tilde{f}(x)=f(x) x∈(a,b):f~(x)=f(x),所以 f ( x ) f(x) f(x)在 ( a , b ) (a,b) (a,b)一致连续。
再证必要性,设 f ( x ) f(x) f(x)在 ( a , b ) (a,b) (a,b)上一致连续: ∀ ε > 0 , ∃ δ > 0 , ∀ x ′ , x ′ ′ ∈ ( a , b ) , ∣ x ′ − x ′ ′ ∣ < δ : ∣ f ( x ′ ) − f ( x ′ ′ ) ∣ < ε \forall \varepsilon>0,\exists \delta>0,\forall x',x''\in (a,b),|x'-x''|<\delta:|f(x')-f(x'')|<\varepsilon ∀ε>0,∃δ>0,∀x′,x′′∈(a,b),∣x′−x′′∣<δ:∣f(x′)−f(x′′)∣<ε
在 ( a , b ) (a,b) (a,b)任取数列 { x n } , x n → a ( n → ∞ ) \{x_{n}\},x_{n}\to a(n\to \infty) {xn},xn→a(n→∞),则 { x n } \{x_{n}\} {xn}是基本数列,对上述 δ > 0 , ∃ N , ∀ n , m > N : ∣ x n − x m ∣ < δ \delta>0,\exists N,\forall n,m>N:|x_{n}-x_{m}|<\delta δ>0,∃N,∀n,m>N:∣xn−xm∣<δ,所以 ∣ f ( x n ) − f ( x m ) ∣ < ε |f(x_{n})-f(x_{m})|<\varepsilon ∣f(xn)−f(xm)∣<ε
所以 { f ( x n ) } \{f(x_{n})\} {f(xn)}是基本数列,所以 { f ( x n ) } \{f(x_{n})\} {f(xn)}收敛,由Heine(海涅)定理, f ( a + ) f(a+) f(a+)存在,同理 f ( b − ) f(b-) f(b−)存在。
【例】 f ( x ) = sin 1 x f(x)=\sin \frac{1}{x} f(x)=sinx1在 ( 0 , 1 ) (0,1) (0,1)连续,但是非一致连续,因为 f ( 0 + ) f(0+) f(0+)不存在。