利用pytorch模式
先做一些数据预处理工作,本文主要使用的数据集是lansinuote/ChnSentiCorp
from transformers import BertTokenizer
token = BertTokenizer.from_pretrained('bert-base-chinese')
import torch
from datasets import load_dataset
dataset = load_dataset('lansinuote/ChnSentiCorp')
print(type(dataset))
class Dataset(torch.utils.data.Dataset):
def __init__(self, dataset):
self.dataset = dataset
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
text = self.dataset[idx]['text']
label = self.dataset[idx]['label']
return text, label
dataset = Dataset(dataset['train'])
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def collate_fn(data):
sents = [i[0] for i in data]
labels = [i[1] for i in data]
#编码
data = token.batch_encode_plus(batch_text_or_text_pairs=sents,
truncation=True,
padding='max_length',
max_length=500,
return_tensors='pt',
return_length=True)
#input_ids:编码之后的数字
#attention_mask:是补零的位置是0,其他位置是1
input_ids = data['input_ids'].to(device)
attention_mask = data['attention_mask'].to(device)
token_type_ids = data['token_type_ids'].to(device)
labels = torch.LongTensor(labels).to(device)
#print(data['length'], data['length'].max())
return input_ids, attention_mask, token_type_ids, labels
loader = torch.utils.data.DataLoader(dataset, batch_size=32, collate_fn=collate_fn, shuffle=True, drop_last=True)
len(loader) # 计算数据集的批次数
引入bert-base-chinese
模型
from transformers import BertModel
pretrained = BertModel.from_pretrained('bert-base-chinese').to(device)
sum(i.numel() for i in pretrained.parameters())/1e6 # 计算模型参数总数
for param in pretrained.parameters():
param.requires_grad = False # 冻结参数
模型后面添加几个层
class Model(torch.nn.Module):
def __init__(self, pretrained):
super(Model, self).__init__()
self.bert = pretrained
self.fn1 = torch.nn.Linear(768, 256)
self.relu = torch.nn.ReLU()
self.fn2 = torch.nn.Linear(256, 768)
self.classifier = torch.nn.Linear(768, 2) # 768是BERT的输出维度,2是分类数
def forward(self, input_ids, attention_mask, token_type_ids):
with torch.no_grad():
output = self.bert(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
#加两个线性层加一个ReLU激活
output = self.fn1(output.last_hidden_state[:,0])
output = self.relu(output)
output = self.fn2(output)
out = self.classifier(output)
return out
定义训练器
from transformers import AdamW
from transformers.optimization import get_scheduler
def train():
optimizer = AdamW(model.parameters(), lr=1e-5)
criterion = torch.nn.CrossEntropyLoss()
scheduler = get_scheduler("linear", optimizer=optimizer,
num_training_steps=len(loader)*3,
num_warmup_steps=0)
model.train()
for i, (input_ids, attention_mask, token_type_ids, labels) in enumerate(loader):
optimizer.zero_grad()
outputs = model(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
scheduler.step()
if i % 10 == 0:
out = outputs.argmax(dim=1)
accuracy = (out == labels).sum().item() / len(labels)
lr = optimizer.state_dict()['param_groups'][0]['lr']
print(i, loss.item(), accuracy, lr)
开始训练
train() # 开始训练
测试
def test():
loader_test = torch.utils.data.DataLoader(
Dataset(load_dataset('lansinuote/ChnSentiCorp')['test']),
batch_size=32,
collate_fn=collate_fn,
shuffle=True,
drop_last=True
)
model.eval()
correct = 0
total = 0
for i, (input_ids, attention_mask, token_type_ids, labels) in enumerate(loader_test):
if i == 5: break # 只测试前5个批次
with torch.no_grad():
outputs = model(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
out = outputs.argmax(dim=1)
correct += (out == labels).sum().item()
total += len(labels)
print('Accuracy:', correct / total)
test() # 开始测试
利用transformers的工具
数据集是从huggingface下载的,无需进入Dataset类进行额外变换,只需要做一些简单的预处理
import torch
from datasets import load_dataset
dataset = load_dataset('lansinuote/ChnSentiCorp')
dataset['train'] = dataset['train'].shuffle().select(range(2000))
dataset['test'] = dataset['test'].shuffle().select(range(100))
def f(data):
return token.batch_encode_plus(data['text'], truncation=True, max_length=512)
dataset = dataset.map(f, batched=True, remove_columns=['text'], batch_size=1000, num_proc=3)
def f(data):
return [len(i) <= 512 for i in data['input_ids']]
dataset = dataset.filter(f, batched=True, num_proc=3, batch_size=1000)
引入模型并添加几层
from transformers import BertModel
pretrained = BertModel.from_pretrained('bert-base-chinese')
sum(i.numel() for i in pretrained.parameters())/1e6 # 计算模型参数总数
for param in pretrained.parameters():
param.requires_grad = False # 冻结参数
import torch
from transformers import BertModel
class Model(torch.nn.Module):
def __init__(self, pretrained):
super(Model, self).__init__()
self.bert = pretrained
self.fn1 = torch.nn.Linear(768, 256)
self.relu = torch.nn.ReLU()
self.fn2 = torch.nn.Linear(256, 768)
self.classifier = torch.nn.Linear(768, 2) # 768是BERT的输出维度,2是分类数
def forward(self, input_ids, attention_mask, token_type_ids, labels=None):
with torch.no_grad():
output = self.bert(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
cls_output = output.last_hidden_state[:, 0] # 获取[CLS]的输出
output = self.fn1(cls_output)
output = self.relu(output)
output = self.fn2(output)
logits = self.classifier(output) # 输出 logits
loss = None
if labels is not None:
loss_fn = torch.nn.CrossEntropyLoss()
loss = loss_fn(logits, labels) # 计算损失
return (loss, logits) if loss is not None else logits
注意在forward
函数中我多加了个参数,labels,因为数据集里面是携带labels的,而且huggingface的特定任务模型也是接受labels这个参数的,如果不加可能不适应huggingface的trainer的调用。
评估函数和训练函数
import evaluate
metric = evaluate.load("accuracy")
import numpy as np
from transformers.trainer_utils import EvalPrediction
def compute_metrics(eval_pred):
logits, labels = eval_pred
predictions = np.argmax(logits, axis=1)
acc = metric.compute(predictions=predictions, references=labels)
return acc
# 定义训练函数
from transformers import Trainer, TrainingArguments
# 参数
training_args = TrainingArguments(
output_dir="./output_dir",
evaluation_strategy="steps",
learning_rate=2e-5,
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
num_train_epochs=2,
weight_decay=0.01,
eval_steps=20,
no_cuda=True,
report_to='none',
)
# 训练器
from transformers import Trainer
from transformers import DataCollatorWithPadding
trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset['train'],
eval_dataset=dataset['test'],
data_collator=DataCollatorWithPadding(token),
compute_metrics=compute_metrics,
)
训练和评估
trainer.train()
trainer.evaluate()